参考資料

参考資料

1. 現地実証実験

破砕瓦の材料特性を把握するために、各種計測機器を設置した実験施設を建設し、H27d ~H28d にかけて、約1年間の計測、観測を実施した。また、上載荷重(現地を通行する工 事車両や、土嚢等による等分布荷重)をかけることで、側方土圧及び材料の経時変化の挙動 把握を実施した。

1.1. 計測および観測の概要

1.1.1.計測

- 1) 実験施設に設置した計器により、土圧、水位、温度、変位を測定した。データは10分 に1回の頻度で自動計測を行い、データロガーに記録した。なお、温度計については、 H27dの検討結果に基づき、H28dに追加で設置した。
- 2) 計測期間は平成28年1月28日~平成28年12月1日である。

1.1.2. 観測

- 1) 実験施設において表 1.1 に示す観測を実施した。
- 2) 観測期間は平成 28 年 1 月 28 日~平成 28 年 12 月 1 日である。

表 1.1 観測項目と観測位置					
観測項目	観測位置	観測の方法			
L型擁壁変位量	L型擁側面の反射シート	トランシット、トータルステーション等			
走行路水準測量	路体表面	レベル等			
L型擁壁水準測量	L型擁壁上面	レベル等			

図 1.1 実験場所

図 1.2 実験施設の全体平面図

図 1.4 実験施設の観測位置図

図 1.5 実験施設の縦断・横断面図

1.1.3. 設置概要

現在設置されている計測機器を図 1.6 に示す。

図 1.6 計測器設置位置

計測項目	計測器	計測器の容量	型式	計測方法	数量
L型擁壁への側圧	土圧計	200KPa	KDA-200KPA		3 断面(3 台)
L型擁壁内の水位	水位計	10m	KW-10C		3 断面(3 台)
L 型擁壁の変位 (側壁変位)	卷込型変位計	+ 500mm DP-500E 自動計測 (10 分間隔の		3 断面(6 台)	
気中部および土中部 の温度	温度計※)	-40~375°C	K 熱電対	インターバル 計測)	3 断面(6 台)
データの収集	データロガー	20ch (電池式)	TDS-150 FSW-10(L)		1セット

表 1.2 設置計測器の一覧

※)温度計は、H28/9/21に設置。それ以外はH28/1/28に設置。

(1) 計測器の配置

計測器の配置を図 1.7 に示す。

図 1.7 計測器の配置図

1.1.4. 計測器の設置方法

(1) 水位計(L型擁壁内の水位)設置方法

水位計の設置要領を図 1.8 に示す。

- 1. 位置出しを行い、塩ビ管(Φ100ストレーナー加工)を擁壁側部にアンカーとサドルバンドを使用して固定する。
- 塩ビ管固定後、水位計を塩ビ管内に下していき、ハンチ部上端に水位計を設置する。
 その後、水位計のケーブルを保護管(Φ30 エフレックス)に通して、データロガーまで配線する。

図 1.8 水位計の設置要領

(2) 巻込み型変位計(L型擁壁の変位)設置方法

巻き込み型変位計の設置要領を図 1.9 に示す。

- 1. 位置出しを行い、打込み単管、単管を使用して、巻込み型変位計の保護箱を取り付ける。
- 2. 保護箱の中に巻き込み型変位計を収納する。
- 3. 擁壁にアンカーを使用してアイナットを取り付け、巻込み型変位計のワイヤーとア イナットをインバー線で結ぶ。
- 4. インバー線は塩ビパイプを使用して保護する。
- 5. その後、巻込み型変位計のケーブルを保護管(Φ30 エフレックス)に通して、データ ロガーまで配線する。

図 1.9 巻込み型変位計の設置要領

(3) 土圧計(L型擁壁への側圧)設置方法

土圧計の設置要領を図 1.10、図 1.11 に示す。

- 1. 位置出しを行い、土圧計を擁壁側面に取付け治具を使用してアンカーで固定する。
- 2. 土圧計の受圧面に砂の入った土嚢袋をセットする。
- その後、土圧計のケーブルを保護管(Φ30 エフレックス)に通して、データロガーまで配線する。

(側面)

図 1.10 土圧計の設置要領(側面図)

(正面)

図 1.11 土圧計の設置要領(正面図)

(4) 温度計(L型擁壁の内側と外側)設置方法

温度計(熱電対)の設置要領を図 1.12 に示す。

- 1. 位置出しを行い、設置想定位置まで開削を行う。
- 2. 土中温度計および外壁温度計を設置後、ケーブルを保護管(Φ30 エフレックスを想定)に通して、データロガーまで配線する。

図 1.12 温度計の設置要領

1.1.5. データロガー設置・計測

(1) 概要・計測概要

設置するデータロガーは、設置する計器(土圧計、水位計、変位計、温度計)のデータを 10分に1回の頻度での保存が可能で、3か月間分のデータを蓄積できる性能を有している。

データ計測は 2016 年 1 月~12 月に実施した。1 月 28 日の設置後は、未計測期間無しで 続けており、データ回収は 1 回/2 月程度実施し、最終データは 12 月 1 日である。データ 回収時においては各計器の動作状況及びデータの取得状況の確認を併せて行った。

(2) データロガーの設置方法

データロガーの設置要領図を図 1.13 に示す。

- 1. データロガー設置位置に打込み単管および単管を使用してデータロガーの保護ボックスを取り付ける。
- 2. 保護ボックス内にデータロガーを収納し、各計測ケーブルをデータロガーの端子に 接続する。

図 1.13 データロガーの設置要領

(3) 計測システム

計測システムは各種計測器の計測ケーブルをデータロガーに接続し、計測は一定間隔の 時間で行い、そのデータを保存するインターバル計測とした。

システムブロックを図 1.14 に示す。

図 1.14 計測システムの接続要領図

(4) 計測頻度及びデータの回収頻度

計測期間は平成 28 年 1 月 28 日から平成 28 年 12 月 1 日まで実施した。なお、計測間隔 は 10 分間隔とし、適宜データ回収、電池交換、計測器の動作確認を実施した(測量実施時 にもデータ回収を実施)。

	E4 - H100224		
計測器	計測頻度	データ回収頻度	備考
土圧計	1回/10分	1 回/4 週間	H28/1/28 設置
水位計	1回/10分	1 回/4 週間	H28/1/28 設置
卷込型変位計	1回/10分	1 回/4 週間	H28/1/28 設置
温度計	1回/10分	1 回/4 週間	H28/9/21 設置

表 1.3 計測頻度及びデータの回収頻度

1.1.6. 観測

(1) 観測概要

実証実験施設において以下の観測を実施した。観測位置を図 1.17、図 1.18 に示す。

項目	観測位置	観測頻度	観測の方法
観測基準点設置 (1級基準点測量)	基礎となる基準 点の設置	H28年1月設置	GNSS
L型擁壁変位量	L型擁壁側面 29点×2面	1/28~3/25に6回(H27検討) 7/25~12/1に3回(H28検討)	測点シールの位置観 測(TS等)
走行路水準測量	路体表面	1/28~3/25に3回(H27検討) 7/25~12/1に3回(H28検討)	横断測量
L型擁壁水準測量	L型擁壁上面	1/28~3/25に3回(H27検討) 7/25~12/1に3回(H28検討)	水準測量

表 1.4 観測項目と観測位置、頻度

(2) 観測基準点設置(基準点測量)

電子基準点岡崎、常滑1、常滑2の3点を既知点としてGNSS測量機により観測を行い、 今後の観測基準点の既知点となる測点3点の水平位置及び標高値を定める。

水平位置については1級基準点測量に基づいて実施した。

なお、標高については GNSS 水準測量により標高を決定した。GNSS 観測における電子 基準点のみの場合の点検計算の許容範囲を表 1.5、GNSS 水準測量の点検計算の許容範囲 を表 1.6 に示す。

表 1.5 GNSS 観測における電子基準点のみの場合の点検計算の許容範囲

区分	許容	範囲	備考
結合多角	水平 (∠N、∠E)	60mm+20mm√N	N:辺数 ⊿N:水平面の南北方向の閉合差
又は単路線	高さ(⊿ U)	150mm+30mm√ N	 ∠E:水平面の東西方向の閉合差 ∠U:高さ方向の閉合差

出典:公共測量作業規程の準則(平成 20 年 3 月 31 日) 第 2 編第 2 章第 6 節第 42 条

	表	1.6	GNSS	水準測量	の点検計	├算の	許容範囲	ŧ
--	---	-----	------	------	------	-----	------	---

区分	許容範囲		備考
基線ベクトルの	水平(⊿N、⊿E)	20mm	∠N:水平面の南北方向の閉合差
較差	高さ(⊿ U)	40mm	∠U:高さ方向の閉合差
既知点間の楕円体高の間	用合差	15mm√S	S:路線長(km 単位)
仮定三次元網平均計算における 楕円体高の閉合差		15mm√S	S:路線長(km 単位)
仮定三次元網平均計算 基線ベクトルの各成分の	こおける D残差	20mm	

出典: GNSS 測量による標高の測量マニュアル(平成 27 年 7 月) 第 2 章 第 5 節 第 18 条

(3) L 型擁壁変位量

前項により設置した観測基準点を既知点としてトータルステーションを使用して L 型擁 壁側面の測点について測角・測距の観測を行い変位量を求めている。L 型擁壁変位量につ いては測定箇所(29 か所×2 面)に反射シートを設置し観測を実施した。

図 1.15 測点シール

図 1.16 L 型擁壁側面部の測点位置図

(4) 走行路水準測量

走行路水準測量については観測点において、接線に対し直角方向を横断方向とし、地形 変化点の地盤高及び距離の観測を 10cm の間隔で観測を行い横断図の作成を実施した。 走行路水準測量の点検計算の許容範囲を表 1.7 に示す(路線測量・横断測量)。

表 1.7 走行路水準測量の点検計算の許容範囲

X	分	距離	標高	摘 要
平	地	L/500	2 cm+5cm $\sqrt{L}/100$	Lは中心杭等と末端
山	地	L/300	5cm+15cm $\sqrt{L}/100$	見通杭の測定距離(m 単位)

出典:公共測量作業規程の準則 第4編第2章第4節第362条

(5) L 型擁壁水準測量

L型擁壁上面の標高については前項により決定した標高を基準に3級水準測量に準じて 実施した。L型擁壁上面の標高の点検計算の許容範囲を表1.8に示す。

西 明 八 光	3級水準測量
泉 闭 音 左	10 mm \sqrt{S} km
既知点から既知点	15 mm \sqrt{S} km
ま で の 閉 合 差	

表 1.8 標高の点検計算の許容範囲

出典:公共測量作業規程の準則 第2編第3章第6節第69条

:観測基準点の設置予定箇所(1級基準点2点設置)

図 1.17 観測基準点の設置箇所

(6) 精度管理

測量の精度確保のため、各工種につき作業の終了後速やかに点検測量を行うとともに 適切な精度管理を行い、この結果に基づいて精度管理表を作成した。各工種の点検測量 率を**表 1.9** に示す。

測 量 種 別	点検測量率
L型擁壁変位量	5%
走行路水準測量	5%
L型擁壁水準測量	5%

表 1.9 精度管理基準

1.2. 実験施設建設時の施工記録

1.2.1. 使用材料の物性

実験施設に用いた材料の物性を表 1.10 に示す。

表 1.10 使用材料と施工時の試験結果

使用した材料の事前試験結果

名称		単位	破砕瓦 (シャモット0-20)	山土 (良質土)	クラシャラン (C-40)	
土粒子の密度		g/m^3	2.605	2.693	—	
自然含水	比	%		7.9	—	
	レキ分	%	69.7	42.5	83.9	
松臣	砂分	%	21.7	37.2		
型皮	シルト分	%	6.8	20.3	16.1	
	粘土分	%	1.8	20.3		
最大粒径		mm	20	37.5	40	
WL		%	N. P.	35.3	N. P.	
Wp		%	N. P.	N. P.	N. P.	
塑性指数IP			N. P.	N. P.	N. P.	
最大乾燥密度γmax		g/m^3	1.630	1.894	2.401	
最適含水比Wopt		%	9.9	10.2	4. 54	
CBR値		%	78.8	48.4	78.3	

現場密度試験(砂置換法):表層部(5層目)

名称	単位	破砕瓦 (シャモット0-20)	山土 (良質土)	クラシャラン (C-40)
含水比	%	4.0	9.8	2.8
湿潤密度	g/m^3	1.700	2.088	2.401
乾燥密度	g/m^3	1.635	1.901	2.335

道路の平板載荷試験

名称	単位	破砕瓦 (シャモット0-20)	山土 (良質土)	クラシャラン (C-40)
地盤反力係数Ks	MN/m^3	71.9	40.0	143.8
(計算に用いた沈下量S)	mm	5.90	10.61	2.95
(荷重強さp)	MN/m^2	424.3	424.3	424.3

*使用した材料の事前試験結果は、実験施設建設工事における材料承諾資料より抜粋した。

1.2.2. 施工管理記録

各材料共に仕上がり厚さ 30cm の5層構成とし、2日間で施工した。その際の施工管理記録を表 1.11 に示す。

作業	内容	管理項目		チェック	備考
1層目施工	C40投入	投入開始時刻	写真	0	2⁄1 11:05
(0~300mm)	砂投入	投入開始時刻	写真	0	10:53
	シャモット投入	投入開始時刻	写真	0	10:26
	転圧	転圧開始時刻	写真	0	11:28
		転圧完了時刻	写真	0	11:34
	層厚管理測量	測量時刻	写真	0	11:41
2層目施工	C40投入	投入開始時刻	写真	0	2∕1 13:04
(300~600mm)	砂投入	投入開始時刻	写真	0	13:16
	シャモット投入	投入開始時刻	写真	0	14:00
	転圧	転圧開始時刻	写真	0	14:34
		転圧完了時刻	写真	0	14:40
	層厚管理測量	測量時刻	写真	0	14:44
3層目施工	C40投入	投入開始時刻	写真	0	2∕1 15:42
(600~900mm)	砂投入	投入開始時刻	写真	0	15:33
	シャモット投入	投入開始時刻	写真	0	14:52
	転圧	転圧開始時刻	写真	0	16:18
		転圧完了時刻	写真	0	16:29
	層厚管理測量	測量時刻	写真	0	16:31
4層目施工	C40投入	投入開始時刻	写真	0	2/2 8:16
(900~1200mm)	砂投入	投入開始時刻	写真	0	8:52
	シャモット投入	投入開始時刻	写真	0	10:21
	転圧	転圧開始時刻	写真	0	11:28
		転圧完了時刻	写真	0	11:42
	層厚管理測量	測量時刻	写真	0	13:14
5層目施工	C40投入	投入開始時刻	写真	0	2⁄3 8:36
(1200~1500mm)	砂投入	投入開始時刻	写真	0	9:00
(GL+700mm)	シャモット投入	投入開始時刻	写真	0	8:01
	転圧	転圧開始時刻	写真	0	11:01
		転圧完了時刻	写真	0	11:07
	層厚管理測量	測量時刻	写真	0	2⁄4 10:47

表 1.11 施工管理記録

1.3. 計測および観測データ

計測および観測を行った実施日は表 1.12 に示す。計測および観測データについては、 次頁以降に示す。

	項目	H27 年度~H28 年度		
計測	土圧			
	水位	H28/1/28~H28/12/1(自動計測)		
	変位	H28/1/28~H28/12/1(自動計測)		
	温度	H28/9/21~H28/12/1(自動計測)		
観測	L型擁壁変位量	H28/1/28~H28/12/1 計7回実施		
	走行路水準測量	H28/1/28~H28/12/1 計7回実施		
	L型擁壁水準測量	H28/1/28~H28/12/1 計7回実施		

表 1.12 計測および観測項目と最新データの更新日

【実験施設による挙動確認】

図 1.19 に示ように、計測変位および観測変位より実験施設の変位挙動の確認を行った 上で、以下の検討を行う。

- 盛土材料の沈下特性の把握
- ② 計測土圧と港湾基準に示されている一般的な土圧論の適用性の確認
 H27dの計測・観測結果より、L型擁壁は微小な変位が生じていることから計測土圧と理論土圧は「主働土圧」に対応していると考える。

計測データについては、H27d,H28d の全計測結果(H28/1/28~H28/12/1)の記録を示す。 なお、降雨量については気象庁 HP アメダスより、愛知県:一色のデータを参照した。

図 1.20 参照する降雨量観測所(アメダスより)

(1) 自然環境

計測データの参考として、計測期間における降雨量、気温のデータを示す。日降雨量は 最大で 50mm 程度、気温は最高 40℃程度を観測した。

図 1.21 降雨量(日あたり降雨量:気象庁 H.P.: 愛知・一色より)

図 1.22 気温(自動観測)

(2) 土圧計

土圧の経時変化を

図 1.23 に示す。以下に傾向を示す。

- ・各材料とも共通して、土圧の増減が確認できる。この要因は降雨、気温等と推察する。
- ・土圧の最大値は、山砂:15kpa>C-40:9kpa>破砕瓦:4kpa 程度となった。なお、9/20-21 に
 等分布荷重載荷実験、11/14~16 に車両通行実験を実施しており、C-40 は前者、山砂は
 両方の場合に、土圧が上昇したまま保持する傾向を示している。

図 1.23 土圧計

(3) 水位計

水位計の経時変化を図 1.24 に示す。なお、経時変化図の縦軸は擁壁天端を基準として 深さ方向の深度を示している。以下に傾向を示す。

- ・地下水位上であることと、降雨量が少ないため水位は観測出来ていない。
- ・9/20 には異常データが観測されている。これは、台風の影響でケーブル接続部に水が 入り混んだ影響と思われ、乾燥後は正常値に戻っている。

図 1.24 水圧計

(4) 変位計

図 1.25~図 1.28 に変位計の経時変化を示す。なお変位は、マイナス値はL型擁壁が 外側へはらみだしている現象を示す。本計測器については、変位計測ワイヤーの延長ワ イヤー(インバー線)が腐食により破断しており、一部異常値または破断していたが、9 月 12 日に全6箇所について、取り替えを実施した。以下に各グラフと傾向を示す。

1) C – 4 O

- ・ 図 1.25(C-40)では、外部への変形が漸増する傾向が見られ、4mm 程度観測されている。なお、8 月付近の外側へのはらみだしについては、他の計測結果(測量、土圧等) には変動はなく、インバー線の腐食による影響と判断する。
- ・ 9/20の等分布載荷実験、11/14~16の車両通行実験の影響は顕著には確認できない。

図 1.25 変位計-1

2) 山砂

- ・ 図 1.26(山砂)では、外部への変形が漸増する傾向が見られ、上下計測位置共に最終 変位として 5mm 程度の変位が生じていおり、上側の変位の方がやや大きい。
- ・ 11/14~16日の車両通行実験の際には、轍が5cm程度できるほど圧縮された関係で、 側方土圧が上昇し、擁壁を内側から外側に押す力が働き、擁壁が外側へ変位してい る。

図 1.26 変位計-2

3) 破砕瓦

図 1.27(破砕瓦)では、他の材料と同様に外部への変位が漸増する傾向が見られ、最終変位として 3mm 程度の変位が生じている。変位量は最も小さい。
 11/14~16の車両通行実験後にやや外側へはらむ傾向が確認できる。

図 1.27 変位計-3

4) 上下端測定位置の相対変位(全材料)

- ・ 図 1.28 に各材料毎の擁壁上下の変位差を考慮した相対変位の経時変化を示す。
- · 各材料共に値はプラスを示しており、底部よりも上側の方が変位量が大きい。
- インバー線の破断補修後(9/12以降)は、等分布載荷試験の影響によるはらみも見られるため山砂、破砕瓦は値が大きく観測されているが、C-40は小さくなっている。
 原因は明確では無いが、測量成果(図 1.34)にも見られるように、L型擁壁の基礎地盤支持力が他と比較し、やや小さかった事が原因として考えられる。

図 1.28 変位計-4(相対変位)

(5) 温度計

図 1.29~図 1.31 に温度経時変化を示す。観測期間の間では大きな差は見られないが、
 地中部に設置した温度計の方が外気の変動に比べ小さい。また最高、最低の数値に
 ついても、観測期間においては外部が、15℃~35℃であったのに対し、17℃~27℃
 と小さい変動範囲となっていた。

図 1.29 温度計-1

図 1.30 温度計-2

図 1.31 温度計-3

1.3.2. 測量

(1) L 型擁壁変位測量

L型擁壁側面の測量シール箇所を計測した結果を図 1.32 に示す。それぞれの面を正面から見た図を表す。以下に傾向を示す。

- ・ 変位量は1cm未満であり、ほとんど変位はない。
- ・ 両端部側の変位量がやや大きい傾向がみられる。
- ・ H28.3.11~H28.9.16 では、半年間観測が空いたが、観測値に変化は見られない。

図 1.32 L 型擁壁変位測量結果

(2) 走行路水準測量

走行路水準測量の結果を図 1.33 に示す。材料部位ごとに下記の断面位置において、横 断測量を実施した結果である。なお、参考として 50mm 上面に横線を引いている。以下 に傾向を示す。

- ・ 各断面共に、10mm 程度の増減が見られるが、総じて大きな変動は見られない。
- ・ 車両走行実験の結果、各材料最大値として C-40:51mm、山砂:56mm、破砕瓦: 38mmの轍が生じ、破砕瓦は他の材料と比べ轍が少ない結果であった。

(3) L 型擁壁水準測量

L型擁壁水準測量の結果を図 1.34 示す。以下に傾向を示す。

- ・ 総じて沈下量は 3cm 未満となっている。
- ・ 3月と9月の計測結果に 5mm 程度の差は見られるが、約6ヶ月の観測期間を考えると、少量で漸増していると思われる。しかし、その後12月までの変動は見られない。
- 沈下傾向としては、進入側(C-40)の沈下量が大きくなっている。計測箇所は擁壁天端位置であり、擁壁を設置している支持地盤の影響と思われる。

L型擁壁水準測量結果(A断面:擁壁の海側)

図 1.34 L 型擁壁水準測量

<参考図>

1.4. 等分布荷重載荷

- (1) 実験施設の表面に等分布荷重をかけるために、各材料毎に大型土のうを設置して計 測(主として土圧計計測)および挙動観測を実施した。
- (2) 等分布荷重及び荷重載荷方法については図 1.35~図 1.38 に示す方法で実施した。なお、実験施設のL型擁壁は、設計分布荷重 w=10kN/m² にて設定されているため、本検討で載荷する等分布荷重はこれを超えない重量となるよう配慮した。 (土嚢袋の重量測定の結果、設計分布荷重 w=8.5kN/m² となった)

図 1.35 等分布荷重載荷実験実施フロー

*載荷順序は「破砕瓦→山砂→C-40」の順で実施した。

図 1.36 土嚢作成~設置フロー

図 1.37 土嚢製作箇所·移動図

図 1.38 大型土のう配置イメージ図

TT

上載荷重を作用させた場合の各材料の土圧の変化を確認するため、等分布載荷試験を実施した。載荷経緯等を表 1.13 および図 1.39 に、土圧の変化図を図 1.40~図 1.42 に示す。

- ・ 図 1.40 は、土圧計の観測開始時期からの結果を示している。破砕瓦と C-40 について はほとんど傾向に差はなく、破砕瓦(4kpa)、C-40(8kpa)程度を示している。一方、山 砂については、等分布載荷試験(9/21)以降は、それまでよりも 3kpa ほど大きく推移し ている(他の 2 材料は明確では無い)。
 - 図 1.41 は、等分布載荷試験の前後の土圧の変化(9/18~9/23)を示したものである。こ の期間は降雨量も多く、土圧の変化が大きい。図中には、載荷試験時期を点で示し たが、破砕瓦以外は増加しているのが確認できる。まお、9/21の夜に3種類共に土圧 が上昇傾向にあるが、近傍のアメダス観測地点では、降雨は観測されて居らず、理 由は不明である(局所的に雨が降った可能性も考えられる)。
 - 図 1.42 は、各材料毎の等分布載荷試験時(10 分間隔)の土圧の変化を計測したもので ある。各材料の変化量は「C-40:1kpa」「山砂:4kpa」「破砕瓦:0.5kpa 未満」とな っており、破砕瓦はほとんど変化が見られない。

写真 1.1 現地載荷状況写真

載荷試験経緯	備考
<1番目 破砕瓦> 9/20 土嚢設置時間 9:40~10:20 (製作→設置)	 ・大型土嚢袋は 100m 程度離れた場所で 20 袋製作。
荷重放置時間 10:20~11:20	 ・製作後、4ton ユニックにて4 袋づつ運搬し、実験施設箇所で25ton クレーンにて設置。その際1袋づつ重量を計測。 ・前日より降雨あり。台風接近に伴い、午
	前で作業中止。
<2番目 山砂> 9/21 土嚢設置時間 8:10~8:25 (破砕瓦より移設)	・大型土嚢袋を、25ton クレーンを使用し、破砕 瓦の上から山砂の上に移設。
荷重放置時間 8:25~9:25 →移設	・前日(9/20)の午後から9/21の朝方にかけて 強い風雨有り。9/21は降雨なし。
<3番目 C-40> 9/21 土嚢設置時間 9:25~9:40 (山砂より移設) 荷重放置時間 9:40~10:45 →撤去	 ・大型土嚢袋を、25ton クレーンを使用し、山砂の上から C-40の上に移設。 ・9/21 は降雨なし。

表 1.13 載荷順序・経緯とりまとめ表

図 1.39 土嚢移設のイメージ図

図 1.40 土圧の変化-1

図 1.41 土圧の変化-2

-載荷経緯-

図 1.42 土圧の変化-3(10分単位の挙動)

1.5. 車両通行

(1) 実験計画

- (1) 実験施設の締固めを促進させるため、ダンプトラック(10t 積)で通行を延べ3日実施し、 その後、破砕瓦部の試料を採取し、破砕瓦の粒径の変化(長期通行に伴う粒子破砕の有 無)を確認、および計測機器の変化確認を目的とする。
- (2) 車両通行の際には、通行するダンプトラックの重量を計測する。実験施設の通行については、1日中(12回/h×5h=60回程度)行う。

図 1.43 車両通行イメージ図

(2) 実施内容

・日時と天候:3日間の天候と地盤状態の概要を示す。

日時	天候	地盤状態
11/14(月)	曇→雨	前日まで3日ほど降雨は無く、地面は乾→湿の移行期間であった。
11/15(火)	墨	前日と夜中の降雨で、地盤は前日より緩く、3日間では最も含 水が多い状況と推察する。
11/16(水)	晴れ	快晴だが、地盤が乾くほどの温度ではなく、前日よりやや乾 いた状態。

・ダンプトラック重量:総重量 20,200kg(車体 11,580kg+積載重量 8,620kg)

・通行数量:60回/日×3日=180回

*11/14~11/16の3日間で実施。

図 1.44 車両通行による実施フロー

図 1.45 車両通行実験後の様子

破砕瓦

(3) 車両通行後の試料を用いた粒度試験

車両通行試験後の破砕瓦の試料を採取し、粒径の変化を確認するために粒度試験を行った。以下に採取試料位置を示す。

- 採取箇所:1箇所
- ・採取深度:3深度(0~20cm、20~40cm、40~60cm)

なお、試料採取時には、掘削深度方向に車両通行載荷の影響具合について目視観察を十 分に行ったが、目視レベルでの材料変化は確認できなかった。

図 1.46 車両通行後の粒度試験の試料採取位置

(4) 粒度試験結果

1) 実験施設築造時の破砕瓦の粒度分布

H27d において、破砕瓦材料の気中まき出し時の細粒分の分粒によるだまり発生の有無を 確認するため、まき出し材料の粒度試験を実施した。試料採取位置は、図 1.47 に示すよ うに、破砕瓦を盛り土する際の最終路面(最上層)にて、ローラー転圧前に路面を 2m× 6mの12 区画(1m×1mメッシュ)に分割し、その各区画の中央部の破砕瓦を採取した。

12 区画の表面位置から採取した試料の粒径加積曲線を図 1.48 に示す。12 区画の中で大きな変動は見られない結果が得られた。

図 1.47 試料採取位置イメージ図

図 1.48 実験施設築造時の破砕瓦(0-20mm)の粒径加積曲線

2) 車両通行後の試料を用いた破砕瓦の粒度分布

図 1.49 に、車両通行前後の粒径加積曲線を示す。

車両通行後の試料を用いた粒度試験の結果、粒子破砕が比較的進行すると予想していた 表層付近の採取箇所①の粒度分布と、さらに深部の採取箇所②と③の粒度分布は明確な違 いが確認できず、車両通行試験実施前の粒度分布のはらつきの範囲内にほぼ収まっている。

以上より、今回の車両通行試験では、車両通行後の粒度は深度ごとに着目した場合でも 変化がほとんど見られず、車両通行前の粒度分布とほとんど同様であることが確認でき、 粒子破砕の影響は認められない結果となった。

図 1.49 車両通行前後の破砕瓦(0-20mm)の粒径加積曲線

1.6. 実験施設撤去時の観察

実験施設の撤去をH29/1/10~12の3日間で実施した。その際、地盤挙動に関する情報を 得るため、観察を実施した。以下にその結果を記載する。

- ・ 1/8 に総雨量 20mm が記録されており、適度な含水比の地盤状態であった。
- ・ 各材料が自立するか否か、撤去時に確認した結果、それぞれ 1.4m の深さで鉛直に 成立した。締め固めた影響によりかなり強固な地盤になっていた。
- 各材料の鉛直断面の上にバックホーにより荷重をかけ、その際の崩壊状況を観察した。破砕瓦については、バックホーのキャタピラ前面が浮くほどの荷重をかけて、ようやく崩壊に至った。それ以外の材料は、それに比べ、早く崩壊した。
- ・ 破砕瓦の崩壊は、乾燥材料のようにほとんど粘りのない崩壊挙動にみえた。瓦の気
 泡部に水分が入る関係で他の材料と比較し、乾燥が早いと思われる。

図 1.50 各材料別直立断面と崩壊時の断面写真

1.7. 計測・観測結果に対する考察

実証実験結果および考察を下記に示す。

なお土圧の変化に関係する、(1)負圧の発生要因、(2)車両通行後の土圧変化の2点については、別途詳細に考察を実施した。

表 1.14 計測及び観測結果一覧表

計測項目	観測結果(H27d,H28d に観測)
水平変位計*1	降雨時の変化は微小であり、降雨と水平変位の相関関係は確認できない。な
(自動計測)	お、擁壁上側と下側の相対変位を確認すると、C-40、山砂では上側が広がる
	のに対し、破砕瓦は大きな差は見られなかった。なお、等分布荷重載荷実験
	時には外側に膨れる傾向が確認できた。
土圧計	計測した全期間を通して、1 日の中での増減が確認された。これは温度によ
(自動計測)	る変化と想定される。なお、等分布荷重載荷実験時には土圧が上昇する傾向
	が確認できた(破砕瓦だけは上昇が確認できなかった)。
水位計	半年の観測の結果、大きな変化は見られなかった。
(自動計測)	
L型擁壁変位	・両端部は盛土材料投入前に比べ1cm程度広がる傾向がみられるが、 その
(測量) * ²	後にあまり変化はない
	・3/11~12/1 までの9ヶ月間の計測ではその間に大きな変位はなかった。
	・等分布荷重載荷実験、走行実験の後で、外側への変位が確認された。
L型擁壁水準	沈下量は、実験施設構築直後が最も大きく、その後は徐々に減少する傾向が
(測量)	確認された。特に、3/11~9/16の半年間計測が空いたが、9/16日以降に変動
	が見られないことから、この期間に沈下はほぼ収束した事が確認できる。
走行路横断測	 一般車両を走行させた場合は、走行路に変動は見られるが、タイヤ跡が確
量(測量)	認できる程度で、土圧の増減に影響を与えるほどの変動はない。
	・車両走行実験時に大きな轍が生じ、その大きさの傾向は C-40=山砂>破
	砕瓦の順であった。
等分布荷重載	盛土上に土嚢を設置する荷重載荷により土圧の変化が確認できた。その増加
荷試験	割合は、C-40>山砂>破砕瓦となったが、破砕瓦の増加は、ほとんど見られ
	なかった
車両通行実験	・車両通行の結果、C-40,山砂については轍が最大 5cm 程度生じ、破砕瓦は
	3cm 程度であった。
	・走行後の路面から採取した破砕瓦での、粒度試験の結果からは、走行に伴
	う表層部の顕著な破砕は確認できなかった。

*1:変位計の延長ケーブル(インバー線)が一部腐食により破断したため、全てを 9/13 に取り替えた。 なお、夏場の測定値に異常が見られたのは、腐食による事、および雑草がケーブルを押した事が原 因として考えられる。

*2:測量精度的には5mm程度の誤差は考えられる。

(1) 負圧の発生要因

土圧計計測結果からの挙動の特長として「降雨後の負圧発生」があった。その要因について検討を実施するに際し、負圧発生要因を下記の2点と想定した。

・ コンクリート擁壁の内外温度差に関係する、膨張収縮を要因とする負圧の発生

土圧計設置位置の温度変化に伴う、計器としての増減(負圧の発生)

その要因と想定される温度の影響を確認するために、擁壁の内外(土中と擁壁外壁)に 設置した温度計と土圧の関係について、以下に考察する。

<計測結果からの確認>

土圧計の計測結果は、前述(p.64)に示すように、日々の変動(増減)が確認できる。その要因として以下の事象を想定し、それぞれについて計測結果をもとに次頁以降に検討した。 ここでは検討項目と結果概要を記載する

1)コンクリート擁壁の膨張収縮に伴う変動

コンクリート擁壁の内外温度差に伴う膨張収縮の結果、土圧計に変化が確認された。 膨張による擁壁のひずみと土圧計の挙動の関係では、それまでの計測土圧(初期土圧)の 小さかった破砕瓦の土圧挙動のみが他の材料と比較し、小さい結果となった。この挙動 は初期土圧の影響と思われる。

2) 土圧計本体の計器としての変動

実験施設建設時は、擁壁・計測器を設置した後に3日間は盛土材料を投入しない状態 が発生していた。その間の土圧計の変化を確認した結果、土圧計は温度に対して変動し ていることが確認された。

3)降雨の影響による温度変化に伴う変動

まとまった量の降雨があった時期を確認した結果、温度が下がった際に土圧低下の傾向は見られたが、増加している箇所もあった。これは「土圧計本体の温度変化の影響」 と「降雨による材料重量の増加に伴う土圧の増加」が複合的に作用した結果と判断する。

<土圧計変動要因のまとめ>

- ・土圧計の負圧発生要因は、①コンクリート内外温度差、②土圧計の温度による変動の 2点が要因であると考えられる。
- ・降雨時の土圧計変動要因は、上記 1)~3)が影響をしていると判断する。そのため、 計測結果は妥当(異常値ではない)であると考えられる。

1) コンクリート擁壁の膨張収縮に伴う変動

コンクリート擁壁の膨張収縮に伴う土圧の変動の影響を検証するため、L型擁壁の内外 に設置した温度計の計測値を用いて、内外温度差(擁壁の膨張収縮による歪み:図1.51 参 照)と土圧の関係を確認した。

その結果、以下の様な内外温度差と土圧増減の関係が確認された。

- ・ 外壁温度が上昇し、内外温度差が漸増する場合、土圧が漸減傾向にあることが確認 できた(図 1.52 参照)。
- ・ 降雨の無い期間(含水比変化の影響の無い期間)だけを選定して、温度変化に伴う 擁壁ひずみと土圧の関係を確認した(図 1.53 参照)。その結果、検証した 3 期間の全 てにおいて、同様の傾向が確認できた。
- ・ 各材料毎に最急勾配を確認した結果、C-40,山砂は傾きが a=-200、破砕瓦は a=-50 と なり、破砕瓦の傾きが最も小さい結果となった(図 1.54)。実験前は、断面の自立し ている方がその勾配は大きいと想定していたが、その逆の結果となった。これは、 元々の土圧が微小なため、土圧計位置の動きによる土圧の微小変化が確認できなか った為と思われる。

図 1.51 L型擁壁の膨張収縮概念図

- ・内外温度計の設置は、9/21日に実施。
- ・L 型擁壁の内外に温度計設置後で、 且つ降雨の無かった下記の時期を選定 した。
 - $\rightarrow 10/4 \sim 10/8$ 10/20 $\sim 10/24$ 11/3 $\sim 11/7$

図 1.52 温度計内外差と土圧増減の関係図

*1) 歪みが大きくなると、擁壁の外側が伸びて弓形にに変形する。そのために土圧が低減する。 *2) 図中には、最急勾配線を記載する。

図 1.53 各材料毎の土圧-擁壁ひずみ関係図

2) 土圧計本体の計器としての変動

実験施設建設時は、擁壁・計測器を設置した後に 3 日間は盛土材料を投入しない状態が 発生していた。図 1.55 は、その期間である 1/28PM~2/1AM までの土圧計と温度の関係を 比較したものである。気温の変動に対する土圧計の変動(±1kpa 程度)が確認できる。

図 1.55 盛土載荷前の外気温と土圧計の関係図

3) 降雨時の温度変化に伴う変動

計測期間中で、ある程度まとまった量の降雨が観測された、以下の2ケースを選定し、 検討を行った。

<ケース1>9/20-21日 台風による降雨

<ケース2>10/17-18日 まとまった降雨(内外温度計設置後)

<ケース1>

等分布荷重載荷実験を行った際の土圧と降雨の関係について確認する。C-40、山砂については 9/21 日の観測データを、破砕瓦については 9/20 日の観測結果を示す。なお、図中の赤色分布については、等分布載荷荷重をかけた時間帯を示す。

・9/20日については、降雨の後に土圧が低下している傾向が見られる。

・9/21日については、降雨はなく、降雨との関係は見られない。

図 1.56 盛等分布載荷試験時(9/20 晩に台風通過)の土圧変化と降雨量の比較図

<ケース2>

土中への温度計設置後の 10/16-17 日の 2 日間の大気温度、土中温度、擁壁温度、降雨量の観測値(全て 10 分毎)を図-1~図-4 に示す。これらの図より以下の傾向が読み取れる。

- ・図-1より、降雨期間は10/175:50~10:30頃にかけて観測された。
- ・図-2 より、降雨期間中の大気温度は 3:00→8:00 にかけて 22 度→17 度に低下、その後 15:00 頃まで上昇し、最高気温 23 度程度を示す。降雨期間中は 18 度前後で一定。
- ・図-3より、降雨期間中の土圧は程度の差はあるものの、3種類共に低下している。
- ・図-4 より、擁壁外部の温度④は、大気中の温度②と同様の動きをしている。一方、地 中の温度変化⑤については、3 種類共に降雨の始まった時刻より温度の低下が確認で きる。

以上の傾向より、以下の事が確認できた。

・降雨が土中に浸透する事で、土圧計周囲の温度を低下させた時に「温度低下→土圧計の温度低下→土圧測定の仕組みによる土圧低下」という傾向が見られる。

なお、16日の挙動についても以下に示す。

 ・図-3 より、16 日は降雨は無かったが、15:00 頃に土圧が小さくなっている。その際の 温度は、最低期ではなく上昇過程にあり「温度低下→土圧計の温度低下→土圧測定の 仕組みによる土圧低下」には当てはまらない。16 日は日中の温度上昇が大きく、擁壁 の内外の温度差が土圧に影響を及ぼした可能性がある。

*10/16~17 における大気温度、土中温度、擁壁温度、降雨量の各観測値 (全て 10 分毎) 図中の 矢印の範囲は、降雨期間を示す。

図 1.57 降雨時の各種温度と土圧の関係(10/16~17)

(2) 車両通行試験での土圧の変化

車両通行実験は、破砕瓦の粒子が車両通行に伴い、どのような破砕を生じるかの確認を 目的に実施しているが、轍ぼれが発生する事に対する土圧計への影響について検討する(図 1.58)。以下に確認できた傾向を示す。

- ・ 11/14の午後から降雨が確認されている。
- ・ C-40、山砂の土圧は実験初日14日の時点で増加が確認できたが、破砕瓦の変動は見られない。増加の理由は走行時の振動により材料が崩壊した結果と想定する。
- ・ 土圧計の山砂部では一時的に上昇している箇所が 11/15、11/16 と見られるが、これ は 10 分毎の計測時に車両通行があったためと想定される。
- ・ 相対変位図で C-40 は、11/15 日に数値が上昇後、急激に減少する傾向が確認できる。 最初、表面だけ押されることで擁壁上端部が押され広がったが、その後の車両通行 により徐々に下端部へ土圧が移動し、元に戻ったと推察する。
- C-40 土圧(側圧) 経時変化 C-40 変位計上-下の相対変位 経時変化 土圧(側圧):KPa 相対変位(上-下):mm 25 4.0 車両通行実験 11/14,15,16の3日間 20 3.0 2.0 約 7kPa 増 15 1.0 0.0 10 -1.0 -2.0 -3.0 5 -4 0 -5.0 11/14 0 11/14 11/15 11/16 11/17 11/15 11/16 11/17 相対変位(上-下):mm 山砂 土圧(側圧) 経時変化 山砂 変位計上-下の相対変位 経時変化 土圧(側圧):KPa 4.0 約 9kPa 増 20 3.0 2.0 1.0 15 0.0 -1.0 10 -2.0 -3.0 5 車両通行実験 11/14,15,16の3日間 -4.0 -5.0 -11/14 0 ______ 11/15 11/17 11/15 11/16 11/17 11/16 土圧(側圧):KPa 破砕瓦 土圧(側圧) 経時変化 相対変位(上-下):mm 破砕瓦 変位計上-下の相対変位 経時変化 25 4.0 車両通行実験 11/14,15,16の3日間 20 3.0 2.0 1.0 15 0.0 -1.0 10 -2.0 -3.0 5 -4.0 0 11/14 -5.0 11/17 2016/11/14 11/15 11/16 2016/11/15 2016/11/16 2016/11/17
- ・ 破砕瓦は、他の材料と比較して、変動は少ない。

土圧変化

擁壁の変位(上端-下端)

<参考-1>

以下に示すブシネスクの弾性応力解に基づく方法を用いて、荷重載荷時の鉛直方向およ び水平方向の応力増加の検討を行った。

車両通行時の輪荷重の算出値を図 1.59、およびブシネスクの弾性応力解に基づく荷重の 応力増加分の分布図を図 1.60 に示す。

車両通行時の鉛直方向の荷重増加は、図 1.60(1)に示すように、車両通行時の直下 5cm で約 69.6kN/m²、直下 50cm で約 41.2kN/m²、直下 100cm で約 24.5kN/m²程度である。

水平方向の荷重増加は、図 1.60(2)に示すように、L型擁壁の壁面付近に着目すると、著 表面より直下 5cm で約 1.1kN/m²、直下 50cm で約 7.7kN/m²、直下 100cm で約 8.0kN/m²程度 である。

実験施設では直下 100cm に土圧計が設置されており、車両通行時の C40 の計測土圧の増 分は約 7kPa、山砂の計測土圧の増分は約 9kPa であり、ブシネスクの弾性応力解に基づく 荷重の応力増加分の推定値(約 8.0kN/m²)とほとんど同様であることが確認できた。

図 1.59 車両通行時の輪荷重の算定

図 1.60(2) ブシネスクによる水平荷重の増分値(∠σ_x)分布図

く参考-2>

ー轍ぼれと地盤物性の関係ー

地盤の上を重量物が走行する際、その設置圧が支持力以上になると、走行部において地 盤がせん断破壊する。通常のアスファルト舗装道路では、表層アスファルトのみが劣化に より崩壊し、ボロボロ崩れることにより発生する事が多いが、今回の実験では、締め固め た材料の上を直接車両が走行した。

道路盛土を構築する際は、一般に路盤よりも上層については材質や締固め方法が決まっ ており、工法規定となるため、締固め試験を実施することは少なく、締固め試験は路床部 分で実施される。支持力(地盤反力)把握の方法としては、CBR 試験、平板載荷試験が一般 的となるが、これらの値で轍の大きさと地盤の抵抗性を評価する事は困難である(今回は、 平板載荷試験で確認、また締固めは 3ton タイヤローラーで締固めを実施した)。

今回の走行実験で生じた轍は、地盤の表層部のすべり破壊が原因と思われるため、基礎 の支持力式の考え方が妥当と思われる。支持力公式では、内部摩擦力 φ が大きいほど支持 力が大きくなるため、轍ぼれ量が小さくなる。

今回の材料では、破砕瓦の轍ぼれ深さが最も少ない結果となっている。このことから、 破砕瓦は内部摩擦角 φの大きな材料であることが確認出来る。

なお、実験施設構築時に実施した平板載荷試験結果 K30(kgf/cm³)の値は以下のようになり、C-40が最も抵抗力(支持力)のある結果となった。

破砕瓦:7.3 (kgf/cm³) 、山砂:4.0 (kgf/cm³) 、C-40:14.6 (kgf/cm³)

- 轍ぼれと土圧の関連性-

走行路実験で生じた轍ぼれは、主としてタイヤ接地面である表層付近で発生した地盤の 破壊のため、5cm 程度の轍深さでは土圧計に直接作用する事はない。ただし、1)表層部分 の地盤が端部L型擁壁を押すことによって、擁壁が外側に移動する結果として土圧に与え る影響、2)轍ぼれとは関係無く、走行時の振動により主動崩壊面にそって地盤が崩壊し、 土圧計に与える影響、という2点も考えられる事象である。

今回の実験結果でも、走行実験初日 14 日に山砂、C-40 は土圧が急激に増加した事が確認されている。その後、土圧はほとんど変更の無い事からも内部崩壊による土圧計への作用の可能性が考えられる。

2. 水中落下試験、振動試験の実施

試験器具および試験概要を図 2.1~図 2.2に示す。試験に用いる容器は、以下の方法で 製作した。

- ・透明塩化ビニルパイプ(内径194mm、長さ2000mm)を縦に二つ割にし、透明シリコ ンシーラント等で再接合、プラスチックベルト等で補強する。
- ・下部端部には不織布フィルターを配置し、排水バルブを設置する。投下破砕瓦の量は、透明塩化ビニルパイプ高さ2mの1/2程度とする。

試験は以下の手順で実施した。

- ・破砕瓦を水中落下後、水の着色の度合いを観察し記録に残す。
- ・自然沈降後、目視にて概ね3層程度に分類し、境界面をマーキングし、下面からの高 さを計測する。
- ・水中落下試験を行った供試体を使用し振動試験を行う。
- ・水中落下試験後、バイブレータを用いて、振動を供試体に十分に与え沈下後、目視に て境界面をマーキングし、下面からの高さを計測する。また、概ね3層程度に分類し、 各々の層毎の体積ひずみを算出する。

図 2.2 水中落下試験の概要図

2.1. 水中落下試験

2.1.1. 試験概要

<事前の予備検討>

- ① 水中落下試験に用いる透明塩化ビニール管は φ202mm、高さ 2000mm で、これに水道水を 注水し水中落下試験を実施するが、パイプ高さ 2000mm まで水を入れ試験を行うと、破 砕瓦の投入時に水位が上がりオーバーフローを起こしパイプから水が溢れ出てしまう ため水中に溶け出した細粒分も流れ出てしまう。
- ② 予備試験において破砕瓦を約 10kgf 投入すると水位は 150~180mm 程上昇するので、 初期の水位をパイプの高さの半分 1000mm として試験を行うこととした。

<試験の実施>

- ③ 破砕瓦の投入方法は図 2.3 に示すような投入器を作製し水面から150mm 上から落とし 込み、破砕瓦の堆積高さと水位の間隔(900~1000mm)を常に一定に保つため水を補充 し水位を調整しながら試験を行った。
- ④ また、試料取り出しの際、2000mmのパイプを半割にするのは作業効率が悪いため1000mmのパイプを2本連結し長さ2000mmの試験用パイプとした(図 2.3)。ただし、連結部に継ぎ手パイプを用いるので約100mm程度透明部分を遮るため、投入する破砕瓦の堆積高さは外から観察できる高さの900mm 迄とした。

⑤ 破砕瓦の投入後は濁度計を用いて濁り具合を測定し、5~7 日程様子を見ながら細粒分

の沈降と水の濁り具合を観察し、その後パイ プ内の水を排水し試験パイプの試料を3分割 に分けそれを採取し篩にかけた。

- ⑥ 水中落下試験の手順を以下に示す。
 - (1) 塩ビパイプ内に水道水を水位 1000mm 迄通 水。
 - (2) 投入器を用いて破砕瓦を投入。投入総重量は 40kgf で一回の投入にスコップ 2 杯分約 2.0kgf を連続的に投入。
 - (3) 4.0~6.0kgf 投入毎に堆積した破砕瓦と水位の差が出るため水を補充しながら常に水位 1000mmを保ち投入を行った。
 - (4) 予定重量の 40.0kgf を全て投入後、堆積した 破砕瓦の高さを測定。
 - (5) 水の濁り具合を濁度計で測定。
 - (6) 細粒分の沈降具合を観察する。

図 2.3 破砕瓦の投入方法

①通水状況

②破砕瓦の投入

③堆積した破砕瓦

④濁り水

写真 2.1 水中落下試験の実施状況

2.1.2. 試験結果

2.1.2.1. 堆積した破砕瓦の高さ測定

投入後、堆積した破砕瓦の出来高を測定し、表 2.1 に投入後の出来高を、表 2.2 に排水 後の出来高を纏めた。それぞれの測定箇所は任意に 5 点取り平均した。No.4、5、6 の供試 体については排水前に振動試験を行ったため排水後の値は記録していない。

また、投入した破砕瓦の重量と堆積した出来高から単位体積重量を纏め表 2.3 に示す。

/++ =-+ /+-	4	0	0	4	F	
1代武1平	I	Ζ	3	4	Ð	平均(mm)
No.1	925	920	915	925	920	921.00
No.2	925	920	920	922	927	922.80
No.3	920	910	932	880	916	911.60
No.4	933	932	928	932	930	931.00
No.5	934	937	946	935	938	938.00
No.6	915	920	910	920	908	914.60

表 2.1 投入直後の堆積高

	表	2.2	排水後の堆積高
--	---	-----	---------

供試体	1	2	3	4	5	平均(mm)
No.1	919	909	918	928	910	916.8
No.2	922	940	925	939	930	931.2
No.3	937	947	940	910	914	929.6
No.4						
No.5						
No.6		_	_		_	

表 2.3 投入した破砕瓦の単位体積重量

/# =≠/★	投入量	内径	高さ	容積	単位体積重量	単位体積重量
洪武冲	(gf)	(cm)	(cm)	(cm ³)	(gf∕cm³)	(kN∕m³)
No.1	40000	20.2	92.10	29515.6	1.355	13.29
No.2	40000	20.2	92.28	29573.3	1.353	13.27
No.3	40000	20.2	91.16	29214.4	1.369	13.43
No.4	40000	20.2	93.10	29836.1	1.341	13.15
No.5	40000	20.2	93.80	30060.4	1.331	13.05
No.6	40000	20.2	91.46	29310.5	1.365	13.39
						12.06

全供試体のY_{Ave}= 13.26

2.1.2.2. 水の濁り具合

投入終了直後から濁度計を用いて水の濁り具合を測定し表 2.4 に纏めた。投入直後の水 は測定器(TD-M500)のレンジを遙かにオーバーしたため計ることが出来なかった。投入後 4 時間経過の測定も測定出来ず、目視でも水面から 10~20mm 先は見えないほど濁りがあっ た。投入後 4 日目にようやくパイプ上部(水面から 100mm)のみ測定値が表示されたが水 面から 150mm を過ぎると測定は出来なくなった。濁度センサーの測定箇所を図 2.4 に示 し、濁りの経過を写真 2.2 に、濁度測定状況を写真 2.3 に、濁度の目安になる濁度見本を 写真 2.4 に示す。

		No.1			No.2			No.3	
測定日時	上	中	Ч	上	中	下	Ч	中	Ч
10/13 11:08									
10/13 11:00									
10/14 11:00									
10/14 17:15									
10/15 12:00	500	500		500	500		500	500	
10/15 17:00	500	500		500	500		500	500	
10/17 09:30	413	500		434	500		485	500	
10/17 17:00	408	500		444	500		453	500	
10/18 09:30	453	500		411	500		411	500	

表 2.4 濁度計測定値(--:測定不可)

投入後

10/15 3日目撮影

10/18 6日目撮影 写真 2.2 水中落下試験における濁りの経過状況

写真 2.3 濁度測定

写真 2.4 濁度見本

2.1.2.3. 粒度試験

水中落下試験を実施した供試体 3 本から試料を採取し、粒度試験を実施した。試料採取 と粒度試験は以下の手順で行った。

- 1. 水中落下試験後にパイプ内の水を排水した後、透明塩化ビニールパイプを縦に二つ 割りにして破砕瓦を露出させる。
- 2. パイプ内の沈降した破砕瓦を概ね三層に分け、各層から試料を採取して粒度試験を 実施した。

(1) No.1 および No.3 の粒度試験

排水後のNo.1パイプを対象にした粒度試験に用いる試料の採取状況を写真 2.5 に示す。 排水後はパイプ表面を写真 2.5(2)のように裁断し上段・中段・下段の 3 層に分け、写真 2.5(3)のように試料を採取した。

採取した試料は乾燥炉で乾燥し粒度試験を行った。粒度試験は各段3回ずつ行い、その 結果を図2.5に纏めた。

図 2.5 には、水中落下試験後の粒度試験結果から取りまとめた粒径加積曲線を示し、参考として港湾基準で示されている粒度による液状化の範囲(均等係数 Uc≥3.5)も併記した。 これより以下のことが確認できた。

- ① 水中落下試験後の No.1 と No.3 の試料(上段、中段、下段)の粒径加積曲線は、概ね 同様の傾向を示している。
- ② 粒度の観点からは液状化し難い材料であることがいえる。

(1)排水後

(2)パイプの裁断 写真 2.5 粒度試験に用いる試料の採取状況

(3)試料採取

図 2.5 水中落下試験後の粒径加積曲線

(2) No.2 の粒度試験

No.2 パイプの粒度試験結果の堆積状況を**写真 2.6** に示す。投入毎に下側から粗粒土〜細 粒土の順に堆積していることが確認できることから、破砕瓦は水中投入時に分級する材料 であることが確認できた。

写真 2.6 No.2 パイプの破砕瓦の堆積状況

No.2 供試体の破砕瓦の投入毎に現れた沈殿層の寸法を計測し、スケッチした図を図 2.6 に、堆積状況を写真 2.7 に示す。

試料採取にあたり各堆積層の観察を行った結果、上部の地表面には細粒分の層が堆積していたが、その他の細粒分が堆積していると見られた部位に細粒分は堆積しておらず、パイプ周りに細粒分がドーナツ状に付着しているだけで、堆積しているのは大きな破砕瓦であった(写真 2.8~写真 2.9、図 2.7 参照)。

図 2.6 No.2 供試体の堆積層スケッチ

写真 2.7 No.2 供試体の状況

写真 2.8 分離して堆積した破砕瓦

写真 2.9 パイプ周りに付着した細粒分

図 2.7 No.2 堆積層

1) 粒度試験の実施

供試体 No.2 の水中落下試験結果から、分級後の破砕瓦の粒度の違いを把握するための粒 度試験を実施した。粒度試験を行う試料の採取箇所は以下の通りである。

採取箇所①:目視観察の結果より、細かな粒度の破砕瓦

採取箇所②:目視観察の結果より、大きな破砕瓦より比較的細かな粒度の破砕瓦

採取箇所③:目視観察の結果より、大きな粒度の破砕瓦

2) 上段部(地表面)の粒度試験結果

上段部の供試体の内、地表面に堆積した細かな粒度の破砕瓦を採取し、粒度試験を 2 回 実施した。試料採取箇所を**写真 2.10**、粒径加積曲線を図 2.8 に示す。

写真 2.10 試料採取箇所

図 2.8 粒径加積曲線

3) 上段部の粒度試験結果

供試体の上段部から**写真 2.11** に示す箇所の試料を採取し、各 1 回ずつ粒度試験を行った。採取した試料の粒径加積曲線を図 2.9 に示す。

4) 中段部の粒度試験結果

供試体の中段部から**写真 2.12** に示す箇所の試料を採取し、各 1 回ずつ粒度試験を行った。採取した試料の粒径加積曲線を図 2.10 に示す。

写真 2.12 試料採取箇所

図 2.10 粒径加積曲線

5) 下段部の粒度試験結果

供試体の下段部から**写真 2.13** に示す箇所の試料を採取し、各 1 回ずつ粒度試験を行った。採取した試料の粒径加積曲線を図 2.11 に示す。

2.2. 振動試験

2.2.1. 試験概要

- ① 水中落下試験を行った供試体3本(No.4、5、6)を使用して振動試験を行った。
- ② 水中落下試験で破砕瓦を投入するとき、振動による沈下を確認するため予めペンキで 色を付けた瓦を用意しおおむね 1/3 毎お境界面にマーカーとして撒いた。
- ③ 水中落下試験終了後にバイブレーターを用いて供試体に振動を与え破砕瓦が沈下後、 目視にて色を付けた破砕瓦の移動量を目視にて計測した。
- ④ 振動を与えたバイブレーターはコンクリート打設時に用いる外振バイブレーターで(写 真 2.14)毎分 12000~15500 で供試体に 30 秒間振動を与えた。

写真 2.14 外振バイブレーター

2.2.2. 試験結果

表 2.5 に水中落下試験後の振動試験による加振前後の破砕瓦の堆積高さや沈下量、表 2.6 に加振前後の破砕瓦の単位体積重量を示す。また、境界面のマーカーの沈下量と体積 ひずみの算出結果を表 2.7 に纏め、No.4~No.6 供試体の加振後の境界面マーカーの沈下状 況を写真 2.15~写真 2.17 に示す。

供試体	計測点	1	2	3	4	5	平均	体積ひずみ			
							(mm)	e(%)			
	加振前	933	932	928	932	930	931.00				
No.4	加振後	897	902	893	894	899	897.00	3.65			
	沈下量	36	30	35	38	31	34.00				
	加振前	934	937	946	935	938	938.00				
No.5	加振後	900	902	898	898	913	902.20	3.82			
	沈下量	34	35	48	37	25	35.80				
	加振前	915	920	910	920	908	914.60				
No.6	加振後	860	851	857	859	863	858.00	6.19			
	沈下量	55	69	53	61	45	56.60				

表 2.5 加振前後の破砕瓦の堆積高さ

全供試体の_{EAve}= 4.55

表 2.6 加振前後の破砕瓦の単位体積重量

≪加振前の破砕瓦の単位体積重量≫

供封休	投入量	内径	高さ	容積	単位体積重量	単位体積重量
供試件	(gf)	(cm)	(cm)	(cm^3)	(gf/cm^3)	(kN/m^3)
No.4	40000	20.2	93.10	29836.12	1.341	13.15
No.5	40000	20.2	93.80	30060.45	1.331	13.05
No.6	40000	20.2	91.46	29310.54	1.365	13.39
	-			全	供試体の y Ave=	13.20

≪加振後の破砕瓦の単位体積重量≫

供封休	投入量	内径	高さ	容積	単位体積重量	単位体積重量
快訊件	(gf)	(cm)	(cm)	(cm^3)	(gf/cm^3)	(kN/m^3)
No.4	40000	20.2	89.70	28746.51	1.391	13.65
No.5	40000	20.2	89.22	28592.68	1.399	13.72
No.6	40000	20.2	85.80	27496.66	1.455	14.27

全供試体の_{γ Ave}= 13.88

表 2.7 加振後の境界面マーカーの沈下量と体積ひずみ ≪加振後の境界面マーカーの沈下量と体積ひずみ≫

供封休	测字粉	1	2	2	4	5	平均	マーカー	体積ひずみ
厌സ仲	側足数	1	Z	3	4	5	(mm)	高さ(mm)	ε(%)
No 4	上	24.0	25.0	25.5	27.0	23.0	24.90	680	3.66
10.4	下	14.5	15.5	15.5	13.0	15.5	14.80	330	4.48
N- 5	上	24.0	20.0	25.0	24.0		23.25	600	3.88
10.5	下	11.5	11.5	18.0			13.67	300	4.56
No 6	上	37.5	38.0	37.0	33.0	30.0	35.10	620	5.66
110.0	下	15.0	15.0	16.0	13.0		14.75	300	4.92

全供試体の_{EAve}= 4.53

写真 2.15 No.4 供試体マーカーの沈下量

写真 2.16 No.5 供試体マーカーの沈下量

写真 2.17 No.6 供試体マーカーの沈下量

振動試験の結果より、以下のことが確認できた。

- (1) 堆積した破砕瓦に振動を与えた結果、平均で 4.5%程度の体積収縮が生じることが確認できた。
- (2) 参考として既往研究事例¹⁾では、図 2.12 に示すような相対密度 Dr と体積ひずみ ε_vの関係が取りまとめられている。同図によると、緩い状態を仮定し Dr=30%時の体積 ひずみを読み取ると、概ね 4.0%程度の体積ひずみが生じることが分かる。
- (3) 以上より、破砕瓦は、他の材料の一例として挙げた砂質土と概ね同程度の体積収縮 (体積ひずみ)が生じる材料であることがいえる。

図 2.12 相対密度と残留体積ひずみの関係

なお、振動試験による加振前後の供試体の相対密度 Dr は表 2.8 に示す通りである。

≪加	≪加振前の破砕瓦の相対密度≫										
供討休	土粒子密度**)	Vs	$V_{\rm v}$	間隙比	最大間隙比※)	最小間隙比**)	相対密度				
供訊件		$\rho_s(g/cm^3)$	(cm^3) (cm^3)		e	e _{max}	e_{min}	Dr(%)			
	No.4	2.579	15509.9	14326.23	0.924	1.049	0.611	28.61			
	No.5	2.579	15509.9	14550.56	0.938	1.049	0.611	25.31			
	No 6	2,579	15509.9	13800.65	0.890	1 049	0.611	36 35			

表 2.8 振動試験による加振前後の相対密度

≪加振後の破砕瓦の相対密度≫

供討休	土粒子密度※)	Vs	$V_{\rm v}$	間隙比	最大間隙比 ^{※)}	最小間隙比**)	相対密度
医肾子	$\rho_{\rm s}({\rm g/cm}^3)$	(cm^3)	(cm^3)	e	e _{max}	e_{min}	Dr(%)
No.4	2.579	15509.9	13236.62	0.853	1.049	0.611	44.65
No.5	2.579	15509.9	13082.79	0.844	1.049	0.611	46.91
No.6	2.579	15509.9	11986.77	0.773	1.049	0.611	63.05
※)友士民工業+	一学本河田サトロン博	1件でいった。て	世7九 下 (0 90		ニーカトの記会	A (4)-34 (+ op	5154

※)名古屋工業大学森河助教よりご提供頂いた破砕瓦(0-20mm)の試験データより設定。

全供試体のDr_{Ave}=

30.09

全供試体のDr_{Ave}= 51.54

¹)梅寿康、仙頭紀明、小野大和、林健太郎:繰返しせん断ひずみ履歴を用いた砂質土の液状化に伴う体 積ひずみの評価法、土木学会論文集 C(地圏工学)、Vol.68、No.4、pp680-694、2014.

3. 水中安息角計測試験

3.1. 試験概要

- 試験に使用するコンテナボックスの底面に滑り防止のため耐水サンドペーパー(320番) を貼り付ける(写真 3.1(1))。
- ② 水道水をボックス内に高さ 150mm 程通水する(写真 3.1(2))。
- ③ 通水後は破砕瓦を投入板(写真 3.1(3))で側壁に這わせるよう落下高さ 0mm に近い距離 で破砕瓦を置くように落とし込んだ(写真 3.1(4))。
- ④ 投入時は水の濁りが酷く堆積した破砕瓦に投入板が当たらぬよう慎重に行った。また、 堆積した破砕瓦の高さと水位の高さが150mmを保つよう水位を調整しながら投入した。 投入した破砕瓦の総重量は湿潤で50kgfであった。
- ⑤ 投入終了後は堆積した破砕瓦の出来高測定を行い(写真 3.1(8))、水を抜き堆積した破 砕瓦の形状を観察し傾斜計を用いて斜面の傾きを計測した(写真 3.1(10)~(11))。
- ⑥ 排水後のコンテナボックス内には堆積層から細粒分が流れ出ていた。形状観察後は、 堆積した破砕瓦と流れ出た細粒分を採取し乾燥炉で乾燥し重量を測定した。水中安息 角試験は計3回行った。

(1)サンドペーパーの貼付け

(2)通水

(3)投入板

(4)投入

写真 3.1 水中安息角計測試験の実施状況

(5)濁り

(6)濁り

(7)投入終了

(8)出来高測定

(9)排水

(10)底面測定

(11)斜面計測

写真 3.1 水中安息角計測試験の実施状況

3.2. 試験結果

投入終了後は堆積した破砕瓦の形状測定を、堆積出来高の測定点(図 3.1)、堆積高さ測 定点(図 3.2)から測定し、水を抜き堆積した破砕瓦の形状を観察した。また、試料容器の 底盤に流れ落ちた砕石瓦の距離を計測し安息角を求めた。また、図 3.3 に示すように任意 の6点を傾斜計によって測定も実施した。

出来高測定結果および安息角の算出結果を図 3.4~図 3.6 に示す。

図 3.1 堆積出来高の測定点

図 3.2 堆積高さ測定点

図 3.3 傾斜測定点

CASE-1 2 UL 1 1

≪出来高測定結果≫ (m)												(mm)		
	а	b	с	d	e	f	g	h	i	j	k	1	m	AVE
0		309	311	313	310	314	308	309	311	311	296	294		307.82
50	266	294	294	296	294	299	293	286	276	290	276	288	256	285.23
100	261	268	264	258	274	268	256	256	255	262	267	258	254	261.62
150	246	236	226	221	204	211	222	224	218	222	214	228	206	221.38
200	213	186	188	196	198	189	176	186	191	181	171	171	196	187.85
250	251	116	136	144	146	151	156	146	150	144	121	126	111	146.00
300	88	56	104	108	111	126	128	115	118	121	118	106	96	107.31
350	48	49	85	89	81	78	94	89	83	72	69	54	64	73.46
400	31	16	14	21	17	28	47	18	36	29	23	29	41	26.92
450	0	6	0	0	26	11	0	0	0	6	11	8	21	6.85

≪傾斜計測定結果≫

	1	2
а	37°	36°
b	36°	35°
с	40°	38°
1	· · · · · · · · · · · · · · · · · · ·	

出来高計測による水中安息角(2)

図 3.4 出来高測定結果と水中安息角の算出結果(CASE-1)

CASE-2 -

≪田	来高》	則定紀	「果≫											(mm)
	а	b	с	d	e	f	g	h	i	j	k	1	m	AVE
0		306	301	296	306	291	296	306	301	301	306	302		301.09
50	281	271	276	271	273	281	288	296	289	294	291	291	288	283.85
100	276	261	261	252	256	262	262	269	264	258	266	265	261	262.54
150	221	223	221	226	222	218	221	235	228	239	229	231	236	226.92
200	176	176	173	176	175	174	171	181	176	185	176	178	171	176.00
250	144	142	141	138	140	151	151	110	106	144	132	129	134	135.54
300	96	94	91	96	94	99	95	94	90	96	- 98	91	101	95.00
350	65	76	74	51	56	48	54	57	46	73	66	56	41	58.69
400	16	16	14	6	0	11	9	23	21	24	45	38	26	19.15
450	4	4	0	0	0	0	0	8	0	0	0	0	0	1.23

図 3.6 出来高測定結果と水中安息角の算出結果(CASE-3)

今回の試験から得られた水中安息角算出結果の一覧を表 3.1 に示す。安息角は、破砕瓦 とコンテナボックスの積極面の影響を考慮し、図 3.4~図 3.6 に示した出来高測定結果の ■枠の測定データより算出した。

算出方法の違いにより、平均で 35°~37°程度の水中安息角となることが確認できた。 今回の試験結果より評価する水中安息角は、設計上の安全側の検討となる 35°程度として 整理することとする。

衣 5.1 小中女に	ふ円の訂	则和木	「見	
算出方法	Case-1	Case-2	Case-3	Ave
出来高計測による水中安息角(1)	36.92°	38.17°	37.11°	37.40 °
出来高計測による水中安息角(2)	35.57°	35.87°	34.29°	35.24°
傾斜計測定による水中安息角	37.00°	37.00°	36.33°	36.78 °

表 3.1 水中安息角の計測結果一覧

3.3. 堆積した破砕瓦の重量

安息角試験で使用した破砕瓦の含水比を求めると 7.56%であった。試験で用意した破砕 瓦の重量は湿潤で 50kgf 投入したので実際の投入量は 46.22kgf であった。試験終了後堆積 した破砕瓦と堆積層から流れ出た細粒分を分けて回収し、乾燥炉で乾燥し重量を量り表 3.2 に纏めた。

試験後の堆積結果より、実際に堆積した重量と、流失した重量(=コンテナボックス底面 に堆積した流失細粒分+排水時の未回収分)を整理すると、全投入材料のうち約 95%~97% の材料が堆積し、約 3%~5%の細粒分が流失することが確認された。

表 3.2 回収した破砕瓦の重量

	投入重量(kgf))	I	回収重量(kgf	排水時の未回収分		
湿潤重量	含水比(%)	乾燥重量	堆積層	流出細粒	kgf	%	
50	7.56	46.22	44.10	0.94	45.04	1.18	2.55

堆積	重量	流失	重量
(kgf)	(%)	(kgf)	(%)
44.10	95.4	2.12	4.6

CASE-2

ţ	投入重量(kgf)	ļ	回収重量(kgf)	排水時の	未回収分
湿潤重量	含水比(%)	乾燥重量	堆積層	流出細粒	合計	kgf	%
50	7.56	46.22	44.90	1.18	46.08	0.14	0.30

堆積	重量	流失重量		
(kgf)	(%)	(kgf)	(%)	
44.90	97.1	1.32	2.9	

CASE-3

1	投入重量(kgf)	ļ	回収重量(kgf)	排水時の	未回収分
湿潤重量	含水比(%)	乾燥重量	堆積層	流出細粒	合計	kgf	%
50	7.56	46.22	44.75	0.90	45.65	0.57	1.23

<u> </u>			
堆積	重量	流失	重量
(kgf)	(%)	(kgf)	(%)
44.75	96.8	1.47	3.2

4. 破砕瓦の濁水に対する簡易ジャーテスト

破砕瓦の濁水対策の一案として、凝集剤を用いた簡易的なジャーテストを実施した。 破砕瓦 0-5mm を水に投入して濁水を作成し、ジャーテストに用いた凝集剤は表 4.1 に示 す通りである。

表 4.1 使用材料

	無機系凝集剤	有機高分子凝集剤
種類	・ポリ塩化アルミニウム(PAC) PAC-250	 ・タキフロック (アニオン系、ノニオン系、カチオ
		ン系、両性系)
凝集反応	アルミニウムイオンの陽電荷+ を持った結合イオンにより濁質を 凝集しフロックを形成する。	微細粒子を主として水素結合によ る吸着で大きなフロックを形成す る。

4.1. 試験方法

試験の概要図を以下に示す。

図 4.1 簡易ジャーテスト概要図

4.2. 試験結果

以下に試験結果を示す。破砕瓦の水中投入時の濁りは、凝集剤による濁質のフロック形 成効果により、濁り対策に一定の効果があることが確認された。

①試験前

③1分間放置

②破砕瓦(0-0.5mm)投入、1分間攪拌

④PAC 投入(100ppm)、1分間攪拌

⑤1分間攪拌後

⑥1分間放置

⑦2分間放置

⑨高分子凝集剤添加(0.1%溶液 2cc)、1 分間攪拌

⑩1分間攪拌後

⑪1分間放置

122分間放置

5. 模型載荷実験

5.1. 実験概要

鋼製土槽に破砕瓦を用いた模型地盤を作製し、破砕瓦上面に重錘を載せて荷重載荷する。 土槽壁面はロードセルを、土槽下面には小型土圧計を配置し、載荷圧力と鉛直応力と水平 応力について調べる。

(1) 実験装置概要

重錘

図 5.1 実験装置概要

(2) 鋼製土槽

使用する鋼製土槽の内寸法は、幅 500mm、高さ 500mm、奥行き 500mmであり、前面は 取り外し可能な透明アクリル板となっており、必要に応じてロードセル設置版の付け替え が可能である。今回はロードセル設置版を取り付けて使用した。

(3) 載荷に用いる重錘

載荷には重錘を使用し、鉛直等分布応力を作用させる。載荷に用いる重錘は、1 個当た り寸法 L98×B90×H13(mm)、重量 W=87N、載荷重量 q=2.5kN/m²であり、1セット4 段積 みまでの載荷が可能である(最大載荷重量 q ≒ 10kN/m²)。

図 5.3 載荷に用いる重錘

(4) 土圧計(小型圧力計)

センサー φ 100mm、容量 50kPa の小型圧力計(BEM-A-50KP 共和電業)を用いる。土圧計 センサーは底面に設置(2 個)し、側面はロードセル(容量 500N)にて対応する。

図 5.4 ロードセル設置版

(1)土圧計(底面設置)

(2)土圧計設置用加工平板

(3) 土圧計と設置用加工平板の設置状況図 5.5 土圧計と土圧計設置用加工平板

(5) 実験ケース

実験の対象材料を表 5.1 に、実験ケースを表 5.2 に示す。今回の模型載荷実験では、等 分布荷重載荷時の破砕瓦の水平土圧および鉛直土圧の増加傾向を確認することを主目的と しているが、実験施設での計測土圧との相対的な対比を行うため、実験施設の盛土材料と して用いられている「破砕瓦 0-20mm」と「山砂」の2種類の材料を対象に実施した。

模型地盤の密度は、密度の違いによる水平および鉛直土圧の応答特性を把握するため、 締固めを行わない場合(緩い場合)と所定の締固め方法により締め固めた場合(密な場合) の2ケースとした。

荷重載荷については、重錘を模型地盤表面に対して全面に配置するもの(5×5)を基本 とし、密度が緩い場合に対しては、車両通行の輪荷重載荷を想定した模型地盤表面中央に 配置するもの(2×2)も実施した。

	X 0.			1
	材料名	地盤の	の密度	備考
材料①	破砕瓦 0-20mm	緩	密	
材料②	山砂	緩	密	実験施設の盛土材料 と同じもの。

表 5.1 実験の対象材料

表 5.2 実験ケース

(6) 実験方法

1) 模型地盤作製

【緩い地盤の場合】

- (1) 10kgの地盤材料を準備し、鋼製土槽に投入した後、地盤表面を敷き均す。
 (図 5.6(1)、(2))
- (2) (1)を繰り返し合計 50kg 投入後、表面を整形し、模型地盤の厚さ測定を行う。
 (図 5.6(3))
- (3) 以下, (1)を繰り返し、地盤材料 50kg 投入ごとに(2)を行う。
- (4) 地盤上面が鋼製土槽上面と同一となるように計量した地盤材料を投入し、地盤表面 を整形する。(図 5.6(4))
- (5) 作製された模型地盤の全体の密度を計算で求める。

(1) 地盤材料の投入

(2) 地盤材料の敷き均し

投入量 100 k

kg											
	0	50	100	150	200	250	300	350	400	450	500
0	218	212	220	213	220	220	221	218	220	217	218
50	218	215	215	217	217	215	220	218	218	214	217
100	218	216	213	217	218	217	220	217	217	215	219
150	220	215	214	220	214	211	218	212	210	213	218
200	215	217	220	219	213	218	215	214	210	212	212
250	218	215	218	217	214	218	215	212	214	210	212
300	219	217	218	212	215	214	214	212	215	212	214
350	214	210	219	220	210	211	212	210	218	217	212
400	213	210	217	212	218	212	212	217	217	218	210
450	215	215	212	214	215	215	217	219	218	215	210
480											
					F	コードセル	,				

(3) 模型地盤厚さ計測

(4) 模型地盤完成

図 5.6 緩い地盤の作成方法

【密な地盤の場合】

- (1) 10kgの地盤材料を準備し、鋼製土槽に投入した後、地盤表面を敷き均す。
- (2) 模型地盤表面を均等に締め固め、合計 200 回締め固める。
- (3) (1)、(2)を繰り返し合計 50kg 投入後、表面を整形し、模型地盤の厚さ測定を行う。
- (4) 以下, (1)、(2)を繰り返し、地盤材料 50kg 投入ごとに(3)を行う。
- (5) 地盤上面が鋼製土槽上面と同一となるように地盤材料を投入し、地盤表面を整形す る。このときの地盤投入量を計測する.
- (6) 作製された模型地盤の全体の密度を計算で求める。

図 5.7 地盤材料の締固め状況

2) 載荷方法

- (1) 図 5.3 で示した重錘を地盤上面に設置する。
- (2) 重錘を設置ごとにロードセルの荷重値をデータロガーにより記録する。

(1) 重錘の設置状況

(2) 重錘設置完了(Case1) (3) 重錘設置完了(Case2) 図 5.8 重錘の設置状況

5.2. 実験結果

作成した模型地盤の密度を表 5.3 に示す。各材料のケース毎に着目した実験結果の比較 を p.145 以降、各ケースの実験結果を p.153 以降に示す。また、参考のため珪砂 7 号を対象 とした実験も行い、合わせて考察した。

地盤材料※1	検討 ケース名	載荷方法、締固めの有無	模型地盤の 乾燥密度 ^{*2} ρd(g/cm ³)	締固度 ^{**2} Dc(%)
	破砕瓦①	Case1(全面載荷)、締固め:無し	1.445	90.3
破砕瓦	破砕瓦2	Case1(全面載荷)、締固め:有り	1.588	99.2
	破砕瓦③	Case2(部分載荷)、締固め:無し	1.442	90.1
	山砂①	Case1(全面載荷)、締固め:無し	1.614	85.2
山砂	山砂②	Case1(全面載荷)、締固め:有り	1.855	97.9
	山砂③	Case2(部分載荷)、締固め:無し	1.603	84.7
珪砂7号 【参考】	珪砂7号②	Casel (全面載荷)、締固め:有り	1.597	98.6

表 5.3 実験ケース一覧

※1:地盤材料は、炉乾燥後、恒温実験室内で保管した。

※2:模型地盤の平均値

表 5.4 に示す模型載荷実験結果の考察より、破砕瓦の優位性と、実験施設での計測土圧 を踏まえた作用土圧の傾向としては以下のことがいえる。

- 破砕瓦は緩詰め地盤でも締固め地盤に近い締固度が得られ、他の材料よりも締固め 管理が容易である。また、破砕瓦は緩詰め地盤であっても他の材料の締固め地盤と 同程度の作用土圧まで抑制できる効果がある。
- ② 実験施設で得られた計測土圧傾向(破砕瓦<C40<山砂)は、模型載荷実験においても 同様の傾向にあることが確認でき、破砕瓦は土圧低減材料として有用的であること を確認した。
- ③ 実験施設では荷重載荷時の破砕瓦の計測土圧に変化が生じなかった理由としては、 模型載荷実験でのサイロ効果と同様の原理であるアーチ効果が、実験施設での計測 土圧設置付近の破砕瓦の骨格構造に作用していたためである可能性が高いと考えられる。
- ④ 鉛直土圧については実験施設では計測されていないが、模型載荷実験の結果から破砕瓦の鉛直方向の応力球根は、山砂と比較して水平方向にやや狭くなり、鉛直にやや延びる傾向にあり、荷重分散角がやや小さくなる可能性が考えられる。

		水平土圧
着目	日比較検討ケース	内容
締固め有無の違い	1.破砕瓦①と破砕瓦② (図 5.9 参照) 2.山砂①と山砂② (図 5.10 参照)	 1.破砕瓦は荷重載荷に伴い水平土圧が表層付近で 土圧が大きくなる傾向にあり、この影響は締固 地盤に強い傾向にある。これは、不動壁内に囲 まれた地盤の土圧作用効果である「サイロ効果 (具体的には 5.2.8.項(p.172)参照)」によるもの と考えられ、内部摩擦角が大きいことに起因し て壁面摩擦力が大きく生じるために生じる現象 である。 2.山砂では緩詰め地盤の場合では、荷重載荷に伴 って土中全体的に土圧が増加する傾向にある が、締固め地盤では破砕瓦②の結果と同様に、 サイロ効果によって表層部分の土圧が増加する 傾向にある。 ⇒<u>破砕瓦は緩詰め地盤であっても締固度が高</u> <u>く、かつ内部摩擦角が高いことから山砂と比較</u> して密地盤に近い挙動を示す傾向にあることが 確認できた。
破砕瓦と山 砂の作用土 圧挙動の違 い	 3.破砕瓦①と山砂① (図 5.11 参照) 4.破砕瓦②と山砂② (図 5.12 参照) 5.破砕瓦③と山砂③ (図 5.13 参照) 	 3.破砕瓦①と山砂①の比較より、破砕瓦は載荷荷 重増加に伴い表層付近で土圧が増加するが、土 中部ではサイロ効果により土圧が山砂よりも小 さくなる。 4.破砕瓦②と山砂②の比較では、両材料で生じる 土圧の明確な差は確認できない。これは、両地 盤とも締固めを実施していることから内部摩擦 角が増加し、サイロ効果により載荷した荷重に 対して大きな壁面摩擦力で抵抗する挙動となる ためであると考えられる。 5.破砕瓦③と山砂③の比較では、破砕瓦は山砂よ りも土圧が小さく生じることが確認できる。ま た、実験結果から得られた土圧分布形状は、壁 面に作用する場合の形状を再現できていること が考えられる。さらに、実際に現場で作用する 上載荷重分布は本検討ケースの部分載荷に近い 状態となることが想定されるため、破砕瓦の土 圧低減材料としての優位性を確認することがで きた。 ⇒<u>破砕瓦は山砂と比較して、模型載荷実験では 緩詰め地盤でもサイロ効果が生じやすい材料で ある。締固め地盤では両材料で明確な差は生じ</u> ない。実現場で想定される荷重載荷ケース(部分 載荷)では、破砕瓦の方が土圧低減材料として優 位性が高いことを確認した。

表 5.4 模型載荷実験結果の考察

締固め地盤 における作 用土圧挙動 の違い	6.破砕瓦②と珪砂7号 ② (図 5.14参照) 7.山砂②と珪砂7号② (図 5.15参照)	 6.締固めた破砕瓦と珪砂7号を比較すると、両地 盤とも載荷荷重の増加によって表層部分で土圧 が増加し、土中部では大きな変化が生じない傾 向にあることが分かる(サイロ効果の影響)。し かし、作用土圧は破砕瓦の方が小さく作用する 傾向にあり、土圧低減に効果があることが確認 できる。 7.締固めた山砂と珪砂7号を比較においても、上 記6.と同様の作用土圧が発生する傾向にある。 両ケースの結果について共通して確認できる内 容は、珪砂7号の場合はサイロ効果による拘束 圧が比較的小さいため、載荷荷重が土中部に伝 達されやすく、土中部の土圧は大きく生じる傾 向にあることがいえる。 ⇒サイロ効果は材料の締固め程度や地盤の内部
		摩擦角に起因する壁面摩擦抵抗に大きく影響す
		ることを実験の結果から確認できた。
		鉛直土圧
着目	比較検討ケース	内容
材料の違い による作用 土圧の違い	8.破砕瓦③と山砂③ (図 5.13参照)	8.今回の模型載荷実験で用いた鋼製土槽サイズが 小さかったため、鉛直方向の計測データの精度 け低いことが想定される(特に中央部の土圧計
		の反応)。そのため、鉛直土圧の計測結果は壁 面部の土圧計のみを参考値として取り扱うこと とする。また、土圧増分の傾向を把握すること を目的として、サイロ効果の影響を受けていな い実験ケース(部分載荷、締固め無し)に着目し た。 載荷荷重の増加に伴って、両材料の鉛直土圧は 増加する傾向にあるが、破砕瓦の方が鉛直土圧 の増分が若干大きい傾向にある。

図 5.9 破砕瓦①と破砕瓦②の比較

図 5.10 山砂①と山砂②の比較

「破砕瓦①」と「山砂①」の比較

図 5.11 破砕瓦①と山砂①の比較

図 5.12 破砕瓦2と山砂2の比較

図 5.13 破砕瓦③と山砂③の比較

図 5.14 破砕瓦②と珪砂7号②の比較

「山砂②」と「珪砂7号②」の比較

図 5.15 山砂②と珪砂7号②の比較

調査	件名		破砕瓦の土	圧測定実験		試験4	手 月 日	2017	/2/2
試料 (深	番号 さ)		砕瓦①-Case	1(全面載荷	ĵ)	試調	_険 者	橋爪 海老澤	秀夫 伸二
	壁面の幅	$W_{\rm w}({\rm mm})$	49	8	使用材料			破砕瓦	(乾燥)
壁	壁面の1枚の高	吊さ H _w (mm)	7	8	土粒子密度	$\rho_{\rm s}({\rm g/cm}^3$)	2.5	79
面	全体の高さ	H(mm)	48	30	内部摩擦角	$\phi_{\rm d}({\rm deg})$	*******	44	6
_	壁面の1枚の面	面積 A _w (mm ²)	38,8	344	粘着力	c (kPa)		0.	.0
伳	土層の幅	W(mm)	50	00	最小間隙比	e_{\min}		0.6	511
試	土層の奥行	B (mm)	46	5	最大間隙比	e _{max}		1.0	49
体	突固め方法				最大乾燥密	度 $\rho_{dmax}(g/g)$	cm ³)	1.6	i01
		仕上	がり深度,z	(mm)					
$x(\min)$	0kg	50kg	100kg	150kg	最終層	0			
0	-480	-332	-183	-31	0	Č	$ \rightarrow \phi \phi \phi \phi$	6 	
50	-480	-332	-181	-31	0	-100			
100	-480	-331	-181	-31	0				
150	-480	-331	-181	-31	0	→ -200			
200	-480	-331	-180	-31	0	账 -300 断			
250	-480	-330	-180	-29	0		- 0 0 0 - 	\$ \$ \$ \$	
300	-480	-331	-179	-29	0	-400			
350	-480	-330	-179	-29	0	500		+	
400	-480	-330	-179	-29	0	-500) 100 2	00 300	400 500
450	-480	-330	-178	-28	0		奥行	すき, <i>B</i> (mm)	
平均值	-480	-331	-180	-30	0	B	図-1 試料50	kgごとの層層	孠
湿潤重量	含水比	乾燥重量	高さ	体積	湿潤密度	乾燥密度	間隙比	相対密度	締固め度
<i>m</i> _t (g)	w(%)	<i>m</i> _d (g)	H(mm)	$V(\text{cm}^3)$	$\rho_{\rm t}({\rm g/cm}^3)$	$\rho_{\rm d}({\rm g/cm}^3)$	е	$D_{\rm r}(\%)$	$D_{c}(\%)$
50,000	0.0	50,000	149	34,643	1.443	1.443	0.787	59.8	90.1
50,000	0.0	50,000	151	35,108	1.424	1.424	0.811	54.3	89.0
50,000	0.0	50,000	150	34,875	1.434	1.434	0.798	57.3	89.6
10,300	0.0	10,300	30	6,975	1.477	1.477	0.746	69.2	92.3
		平均			1.445	1.445	0.786	60.2	90.3
上載荷重			水	平応力 $p_{h}(k)$:Pa)			鉛直土圧	p_v (kPa)
q (kPa)	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力 $P_{h}(kN)$	壁面部	中央部
0	0.624	0.990	1.106	1.341	1.332	0.866	0.2431	7.652	6.219
4.93	1.794	1.758	1.344	1.762	1.659	1.307	0.3738	10.859	7.924
9.79	3.321	2.867	2.070	2.407	2.340	2.039	0.5844	15.250	10.004
	r								
壁面変位比			水	平応力 p _h ()	:Pa)	1		鉛直土圧	p _v (kPa)
$\Delta h/h_w(\%)$	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力P _h (kN)	壁面部	中央部
0.00	3.321	2.867	2.070	2.407	2.340	2.039	0.5844	15.250	10.004
0.01	2.630	2.373	1.585	1.929	1.860	1.529	0.4625	15.216	10.128
0.02	2.386	2.283	1.479	1.788	1.706	1.381	0.4281	15.305	10.128
0.03	2.174	2.257	1.444	1.678	1.612	1.287	0.4060	15.305	10.483
0.04	2.010	2.180	1.395	1.566	1.516	1.165	0.3819	15.305	10.305
0.05	1.887	2.167	1.370	1.556	1.490	1.110	0.3722	15.394	10.305
0.06	1.730	2.125	1.286	1.463	1.416	1.036	0.3518	15.572	10.217
0.07	1.614	2.064	1.190	1.392	1.332	0.972	0.3327	15.394	10.305
0.08	1.550	2.100	1.177	1.395	1.323	0.949	0.3299	15.394	10.483
0.09	1.486	2.051	1.145	1.350	1.261	0.914	0.3188	15.394	10.483
0.10	1.421	1.994	1.058	1.293	1.194	0.866	0.3039	15.394	10.483
【備考】				da					

5.2.1. 破砕瓦①: Case1(全面載荷)、締固め無し

図 5.16 破砕瓦①の実験結果(1)

調査	件名		破砕瓦の土	圧測定実験		試験4	 手月日	2017	/2/3
試料 (深	番号 さ)	破砕瓦	22-Case1 (就員	険 者	橋爪 海老澤	 秀夫 伸二
	壁面の幅	W _w (mm)	49	98	使用材料			破砕瓦	(乾燥)
壁	壁面の1枚の高	ちさ H _w (mm)	7	8	土粒子密度	$\rho_{s}(g/cm^{3})$)	2.5	79
甬	全体の高さ	H (mm)	48	30	内部摩擦角	$\phi_{\rm d}(\rm deg)$		44	.6
LE1	壁面の1枚の面	積 A _w (mm ²)	38,	844	粘着力	c (kPa)		0.	0
	土層の幅	W(mm)	50	00	最小間隙比	e min		0.6	11
供 試	土層の奥行	<i>B</i> (mm)	46	55	最大間隙比	e max		1.0	49
体	突固め方法		10kg投入ごと	に200回突固め	最大乾燥密	度 ρ _{dmax} (g/g		1.6	01
		仕上	がり深度, z	(mm)		, unit (C	,		
x (mm)	0kg	50kg	100kg	150kg	最終層	0			
0	-480	-348	-205	-77	0	. 0 0			
50	-480	-348	-205	-77	0	-100			•
100	-480	-347	-206	-77	0	(uuu		+	
150	-480	-345	-205	-76	0	÷ -200	$\rightarrow \phi \phi \phi$	$\phi \phi \phi \phi$	÷
200	-480	-345	-207	-76	0	1111-1111-1111-1111-1111-1111-1111-11			-+
250	-480	-344	-205	-74	0	应 - 200		\$-\$-\$-\$	
300	-480	-344	-206	-73	0	-400			
350	-480	-345	-208	-74	0				
400	-480	-343	-207	-74	0	-500	100 2	00 200	φφ 400 500
450	-480	-342	-205	-73	0		· 100 2 風谷	.00 300 · 〒き、 <i>B</i> (mm)	400 500
	-480	-345	-206	-75	0	В	又-1 試料50	ic, 2(mm) kgごとの層厚	Į
	全水比		高さ	休積	湿潤密度			相対密度	- 締固め度
m.(9)	w(%)	$m_{d}(g)$	H(mm)	$V(\text{cm}^3)$	$\alpha_{\rm c}(\rm g/cm^3)$	$\rho_{\rm s}({\rm g/cm}^3)$	间床LL e	D.(%)	加加回の)文 D。(%)
50,000	0.0	50,000	135	31 388	1 593	1 593	0.619	98.2	99.5
50.000	0.0	50.000	139	32.318	1.547	1.547	0.667	87.2	96.6
50.000	0.0	50.000	131	30.458	1.642	1.642	0.571	109.1	102.6
27.349	0.0	27.349	75	17.438	1.568	1.568	0.645	92.2	97.9
.,		平均		.,	1.588	1.588	0.626	96.7	99.2
		1.0							
上載荷重			水	平応力 $p_{h}(k)$	Pa)			鉛直土圧	p _v (kPa)
q (kPa)	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力P _h (kN)	壁面部	中央部
0	1.113	2.016	1.981	1.595	2.124	2.275	0.4313	10.500	6.130
4.93	2.502	1.971	1.782	1.542	2.250	2.608	0.4916	13.214	6.144
9.79	4.196	1.933	1.535	1.520	2.422	3.110	0.5716	16.615	5.836
	1								
壁面変位比			水	平応力 <i>p</i> _h (k	:Pa)			鉛直土圧	p v(kPa)
$\Delta h/h_w(\%)$	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力P _h (kN)	壁面部	中央部
0.00	4.196	1.933	1.535	1.520	2.422	3.110	0.5716	16.615	5.836
0.01	3.199	1.328	0.887	0.900	1.770	2.211	0.3999	16.728	5.775
0.02	2.543	1.032	0.534	0.537	1.393	1.789	0.3041	16.728	5.863
0.03	2.325	0.923	0.395	0.383	1.220	1.635	0.2672	16.817	5.863
0.04	2.199	0.801	0.267	0.241	1.052	1.532	0.2366	16.906	5.952
0.05	2.084	0.675	0.183	0.129	0.856	1.451	0.2089	17.173	5.863
0.06	1.891	0.559	0.129	0.058	0.647	1.307	0.1783	17.173	5.775
0.07	1.711	0.482	0.096	0.023	0.502	1.146	0.1538	17.173	5.775
0.08	1.621	0.408	0.058	0.016	0.402	1.049	0.1381	17.440	5.863
0.09	1.569	0.383	0.045	0.010	0.344	1.014	0.1307	17.440	5.863
0.10	1.402	0.318	0.019	0.003	0.238	0.875	0.1109	17.529	5.863
【備去】			/					>	

5.2.2. 破砕瓦②: Case1(全面載荷)、締固め有り

図 5.18 破砕瓦②の実験結果(1)

図 5.20 実験終了後の側壁移動に伴う破砕瓦の崩壊状況

調査	件名		破砕瓦の土	圧測定実験		試験年	戶月 日	2017	/2/2
試料 (深	番号 さ)		砕瓦③-Case	2(部分載荷	ĵ)	、試り	<u>検</u> 者	橋爪 海老澤	秀夫 伸二
	壁面の幅	W _w (mm)	49	98	使用材料			破砕瓦	(乾燥)
壁	壁面の1枚の高	うさ H _w (mm)	7	8	土粒子密度	$\rho_{\rm s}({\rm g/cm}^3)$)	2.5	79
雨	全体の高さ	H (mm)	48	30	内部摩擦角	$\phi_{\rm d}(\rm deg)$		44	.6
LE1	壁面の1枚の面	ī積 A _w (mm ²)	38,	844	粘着力	c (kPa)		0.	0
	土層の幅	W(mm)	50	00	最小間隙比	e min		0.6	11
武	土層の奥行	<i>B</i> (mm)	46	55	最大間隙比	e max		1.0	49
体	突固め方法				最大乾燥密	度 Pdmax(g/g	cm ³)	1.6	01
		仕上		(mm)		, unitax (e)	,		
x (mm)	0kg	50kg	100kg	150kg	最終層				
0	-480	-331	-179	-31	0			ě ě ě ě	ě ě
50	-480	-332	-180	-32	0	-100			
100	-480	-331	-181	-33	0	(uc			
150	-480	-330	-182	-32	0	÷ -200			
200	-480	-329	-183	-32	0	الله الله الله الله		+	- +
250	-480	-329	-183	-31	0	账 -300	• • • •	• • • •	.
300	-480	-329	-182	-30	0	-400			
350	-480	-331	-181	-30	0				
400	-480	-330	-179		0	-500 9		φ φ φ φ	400 500
450	-480	-329	-179	-29	0	. 0	9 100 2 東彳	00 300 デき B(mm)	400 500
	-480	-320	-170	-2)	0		天日 図-1 試料50	」で、 <i>D</i> (mm) kgデレの届M	.
- 一個面子	수 값 반	-550	-101 宣々	-51	1週週次 由	■ 乾榀恋度	BER411.	Age C V/高/	* 逆田み度
他相里里	四小儿	平4/朱里里 m (g)	同 C H(mm)	(中) (m ³)	迎(四)四度	和保证及	间限比 e	1日月1日度	和回の皮
50,000	w(%)	50,000	11 (1111)	V (CIII)	ρ _t (g/cm)	$\rho_{\rm d}(\rm g/cm)$	0.798	D _r (70)	D _c (70)
50,000	0.0	50,000	140	34,673	1.434	1.434	0.798	50.8	09.0
50,000	0.0	50,000	149	34,045	1.445	1.445	0.787	57.3	90.1
10,500	0.0	10,500	21	7 208	1.454	1.434	0.798	62 7	01.0
10,500	0.0	亚均	51	7,208	1.437	1.437	0.770	50.5	91.0
		十均			1.442	1.442	0.788	59.5	90.1
			- TK I	T. E. D. D. (L	(Da)			松直十日	n (kPa)
工戦何里 <i>a</i> (kPa)	GL-40mm	GL-120mm	GL-200mm	GL_{280mm}	GL-360mm	GL-440mm	合力P.(kN)	如西土/工 陸五如	p _v (Ri a)
	0.563	0.878	0.833	1 055	1 155	0.879	0 2083	印里里 808 8	4 975
0.79	0.505	0.934	0.035	1 197	1 233	0.012	0.2003	9 367	5 278
1.57	0.527	1 110	1 159	1 /17	1 331	0.914	0.2245	9.801	5.613
	0.527	1.110	1.157	1.417	1.551	0.959	0.2520	9.091	5.015
膝面恋位せ			7K 3	平応力 n.(k	(Pa)			鉛直十圧	n "(kPa)
$\pm m \not \propto \mu \mathcal{H}$	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力P.(kN)	辟面如	中中动
0.00	0.527	1 110	1 159	1 417	1 331	0.959	0 2526	비미 108 Q	5.613
0.00	0.367	0.981	1.035	1 325	1 197	0.830	0.2320	9 788	5 952
0.01	0.507	0.201	0 772	0 057	0.862	0.050	0.2220	9.700	5.952
0.02	0.134	0.650	0.725	0.952	0.002	0.183	0.1337	10.055	6.041
0.03	0.133	0.039	0.039	0.078	0.720	0.403	0.1403	10.055	5 957
0.04	0.129	0.037	0.017	0.700	0.740	0.434	0.1279	10.144	5 052
0.03	0.123	0.579	0.330	0.730	0.079	0.363	0.1160	10.233	5.932
0.00	0.110	0.572	0.547	0.707	0.073	0.304	0.1137	10.522	5.932
0.07	0.100	0.540	0.308	0.642	0.644	0.331	0.1089	10.322	0.041 5 775
0.08	0.087	0.508	0.400	0.043	0.599	0.299	0.1011	10.233	5.//5
0.09	0.090	0.508	0.479	0.640	0.586	0.299	0.1011	10.500	5.952
0.10	0.090	0.495	0.463	0.624	0.560	0.280	0.0976	10.500	6.219

5.2.3. 破砕瓦③: Case2(部分載荷)、締固め無し

図 5.21 破砕瓦③の実験結果(1)

調査	件名		破砕瓦の土	圧測定実験		試験4	手月 日	2017	/2/2
試料 (深	番号 さ)		山砂-Case1	(全面載荷)		、試り	険 者	橋爪 海老澤	秀夫 伸二
-	壁面の幅	W _w (mm)	49	98	使用材料			山砂	(乾燥)
壁	壁面の1枚の高	ちさ H _w (mm)	7	8	土粒子密度	$\rho_{\rm s}({\rm g/cm}^3$)	2.6	50
त्स	全体の高さ	H (mm)		30	内部摩擦角	$\phi_d(\text{deg})$		30	.0
(EI)	壁面の1枚の面	ī積 A(mm ²)	38.	844	粘着力	c (kPa)		0.	0
	土層の幅	W(mm)	5(0	最小間隙比	e .			
供試	十届の風行	<i>R</i> (mm)	Δ <i>t</i>	5	最大間隙比	e			
体	空田めち注	<i>D</i> (1111)			最大乾煸宓	re max		1.8	04
	大回の方伝	仕上	がり涩度 -	(mm)	AX 八十山/木山/	$\sim \rho_{\rm dmax} g$		1.0	<u></u>
x (mm)	Oleg	501cg	100kg	150kg	是纹菌				
0	0Kg 480	247	100kg	130Kg	取形管	0 0		* 	• •
50	-+80	-347	-210	-02	0	-100	, , , , ,	~ ~ ~ ~	~
100	-460	-347	-215	-01	0	Ê			
100	-480	-34/	-215	-82	0	≝ -200 e			_
	-480	-34/	-215	-81	0) 逝		+	-+
200	-480	-345	-214	-80	0	账 -300			
250	-480	-346	-213	-79	0	400			
300	-480	-346	-212	-79	0	-400			
350	-480	-345	-213	-79	0	-500	} 	$\phi \phi \phi \phi$	• •
400	-480	-346	-211	-78	0	C	100 2	.00 300	400 500
450	-480	-342	-209	-77	0		奥行	うき, <i>B</i> (mm)	
平均值	-480	-346	-213	-80	0		図-1 試料50	kgごとの層厚	Į
湿潤重量	含水比	乾燥重量	高さ	体積	湿潤密度	乾燥密度	間隙比	相対密度	締固め度
<i>m</i> _t (g)	w(%)	<i>m</i> _d (g)	H(mm)	$V(\text{cm}^3)$	$\rho_{\rm t}({\rm g/cm}^3)$	$\rho_{\rm d}({\rm g/cm}^3)$	е	$D_{\rm r}(\%)$	<i>D</i> _c (%)
50,000	0.0	50,000	134	31,155	1.605	1.605	0.651	—	84.7
50,000	0.0	50,000	133	30,923	1.617	1.617	0.639	—	85.4
50,000	0.0	50,000	133	30,923	1.617	1.617	0.639	—	85.4
30,060	0.0	30,060	80	18,600	1.616	1.616	0.640	_	85.3
		平均			1.614	1.614	0.642	—	85.2
上載荷重			水	平応力 p _h (k	:Pa)			鉛直土圧	$p_{\rm v}$ (kPa)
q (kPa)	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力 $P_h(kN)$	壁面部	中央部
0	0.257	0.608	0.820	1.186	1.261	0.981	0.1986	7.029	5.686
4.93	1.475	1.597	1.735	2.155	2.043	1.567	0.4107	10.137	8.320
9.79	2.897	2.759	2.865	2.982	2.747	2.179	0.6382	13.270	10.896
壁面変位比			水	平応力 $p_{h}(k)$:Pa)			鉛直土圧	p _v (kPa)
$\Delta h/h_w(\%)$	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力 $P_{h}(kN)$	壁面部	中央部
0.00	2.897	2.759	2.865	2.982	2.747	2.179	0.6382	13.270	10.896
0.01	2.309	2.283	2.273	2.354	2.134	1.680	0.5062	13.792	10.838
0.02	2.228	2.257	2.238	2.318	2.043	1.606	0.4930	13.881	11.105
0.03	2.241	2.283	2.264	2.341	2.050	1.599	0.4963	13.792	11.105
0.04	1.945	2.151	2.074	2.174	1.805	1.416	0.4492	14.059	11.194
0.05	1.916	2.096	2.077	2.180	1.770	1.377	0.4435	14.059	11.283
0.06	1.852	2.068	2.061	2.180	1.712	1.345	0.4357	13.970	11.460
0.07	1 762	2.000	1.974	2.100	1 615	1.278	0.4168	14.059	11.460
0.08	1 765	2.000	1 997	2.100	1 619	1 268	0.4188	14 059	11 549
0.00	1.705	1 90/	1.957	2.122	1 55/	1.200	0.4098	14 237	11.57
0.09	1.701	1.204	1.200	2.100	1.554	1.230	0.4020	1/ 1/9	11 5/10
【備去】	1.704	1.039	1.750	2.038	1.473	1.175	0.5704	14.140	11.349

5.2.4. 山砂①: Case1(全面載荷)、締固め無し

・最大乾燥密度は実験施設で使用した材料の事前試験結果から引用 ・壁面の移動は上載荷重最大時で実施

図 5.23 山砂①の実験結果(1)

調査	件名		破砕瓦の土	王測定実験		試験	年月日	2017	7/2/3
試料 (深	番号 さ)	山砂	>-Case1(全	面載荷)−締	固め	武!	験 者	橋爪 海老澤	秀夫 伸二
	壁面の幅	$W_{\rm w}({\rm mm})$	49	98	使用材料			山砂	(乾燥)
壁	壁面の1枚の高	うさ H _w (mm)	7	8	土粒子密度	$\rho_{\rm s}({\rm g/cm}^3)$	³)	2.6	50
面	全体の高さ	H(mm)	48	30	内部摩擦角	$\phi_{\rm d}({\rm deg})$		35	.0
	壁面の1枚の面	前積 A _w (mm ²)	38,	844	粘着力	c (kPa)		0.	0
供	土層の幅	W(mm)	50	00	最小間隙比	e _{min}			
試	土層の奥行	B(mm)	46	55	最大間隙比	e _{max}			
体	突固め方法		10kg投入ごと	に200回突固め	最大乾燥密	度 $\rho_{\text{dmax}}(g)$	cm ³)	1.8	94
r(mm)		仕上	がり深度, z	(mm)					
<i>x</i> (IIIII)	0kg	50kg	100kg	150kg	最終層	0 (
0	-480	-366	-250	-134	0				
50	-480	-366	-250	-135	0	-100			
100	-480	-366	-249	-134	0				
150	-480	-365	-249	-133	0	-200 N -200			
200	-480	-363	-248	-133	0	₩ -300			
250	-480	-363	-248	-132	0			<u></u>	
300	-480	-362	-248	-130	0	-400			
350	-480	-361	-247	-130	0	500	$\begin{array}{c}$	+	
400	-480	-361	-247	-128	0	-300 () 100 2	.00 300	400 500
450	-480	-360	-244	-127	0		奥谷	 うき, <i>B</i> (mm)	
平均值	-480	-363	-248	-132	0	[図-1 試料50	kgごとの層層	孠
湿潤重量	含水比	乾燥重量	高さ	体積	湿潤密度	乾燥密度	間隙比	相対密度	締固め度
<i>m</i> _t (g)	w(%)	<i>m</i> _d (g)	$H(\mathrm{mm})$	$V(\text{cm}^3)$	$\rho_{\rm t}({\rm g/cm}^3)$	$\rho_{\rm d}({\rm g/cm}^3)$	е	$D_{\rm r}(\%)$	$D_{c}(\%)$
50,000	0.0	50,000	117	27,203	1.838	1.838	0.442	_	97.0
50,000	0.0	50,000	115	26,738	1.870	1.870	0.417	—	98.7
50,000	0.0	50,000	116	26,970	1.854	1.854	0.429	—	97.9
57,000	0.0	57,000	132	30,690	1.857	1.857	0.427	—	98.0
		平均			1.855	1.855	0.429	_	97.9
								-	
上載荷重		-	水	平応力 <i>p</i> _h (k	(Pa)			鉛直土圧	p _v (kPa)
q (kPa)	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力 $P_{\rm h}({\rm kN})$	壁面部	中央部
0	1.141	1.791	1.672	1.534	1.931	1.860	0.3857	11.745	6.308
4.93	2.117	1.918	1.636	1.502	2.019	2.103	0.4387	14.872	6.369
9.79	3.450	2.035	1.602	1.476	2.147	2.580	0.5162	18.464	6.180
壁面変位比		r	水	平応力 p _h (k	(Pa)	r	r	鉛直土圧	p _v (kPa)
$\Delta h/h_{\rm w}(\%)$	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力P _h (kN)	壁面部	中央部
0.00	3.450	2.035	1.602	1.476	2.147	2.580	0.5162	18.464	6.180
0.01	2.106	1.228	0.852	0.707	1.268	1.509	0.2980	18.597	6.219
0.02	2.103	1.232	0.852	0.711	1.261	1.519	0.2982	18.597	6.130
0.03	2.106	1.232	0.852	0.711	1.268	1.525	0.2988	18.686	6.308
0.04	1.170	0.653	0.289	0.167	0.589	0.827	0.1436	19.131	6.308
0.05	2.113	1.235	0.878	0.733	1.281	1.538	0.3021	18.864	6.219
0.06	0.977	0.537	0.206	0.106	0.451	0.679	0.1148	19.220	6.130
0.07	2.113	1.212	0.839	0.701	1.261	1.548	0.2981	18.597	6.308
0.08	0.476	0.257	0.077	0.045	0.122	0.270	0.0485	20.109	6.308
0.09	0.315	0.161	0.023	0.000	0.023	0.154	0.0262	20.287	6.130
0.10	2.113	1.238	0.871	0.733	1.281	1.522	0.3013	18.597	6.219
「俪之」									

5.2.5. 山砂②: Case1(全面載荷)、締固め有り

・最大乾燥密度は実験施設で使用した材料の事前試験結果から引用
 ・壁面の移動は上載荷重最大時で実施

図 5.25 山砂②の実験結果(1)

図 5.27 実験終了後の側壁移動に伴う山砂の崩壊状況

調査	件名		破砕瓦の土	圧測定実験		試験4	手 月 日	2017	/2/1
試料 (深	番号 さ)	Ц	山砂③-Case2	(部分載荷)		試員	験 者	橋爪 海老澤	秀夫 伸二
	壁面の幅	$W_{\rm w}({\rm mm})$	49	98	使用材料			山砂	(乾燥)
壁	壁面の1枚の高	うさ H _w (mm)	7	8	土粒子密度	$\rho_{\rm s}({\rm g/cm}^3$)	2.6	50
面	全体の高さ	H(mm)	48	30	内部摩擦角	$\phi_{\rm d}({\rm deg})$		35	.0
	壁面の1枚の面	ī積 A _w (mm ²)	38,	844	粘着力	c (kPa)		0.	.0
供	土層の幅	W(mm)	50	00	最小間隙比	e_{\min}			
試	土層の奥行	B (mm)	46	55	最大間隙比	e max			
体	突固め方法				最大乾燥密	度 p _{dmax} (g/	cm ³)	1.8	94
()		仕上	がり深度, z	(mm)					
x (mm)	0kg	50kg	100kg	150kg	最終層	0 0			
0	-480	-347	-214	-76	0				
50	-480	-346	-214	-77	0	-100			
100	-480	-347	-213	-76	0	(uuu		+	
150	-480	-346	-212	-76	0	[™] -200 ($\rightarrow \phi \phi \phi$	 	-
200	-480	-345	-210	-74	0	₩ ⊮ -300			
250	-480	-345	-211	-75	0	, <u>%2</u> 500		 	
300	-480	-345	-209	-75	0	-400			
350	-480	-344	-209	-75	0	l c		. i i i i i _	
400	-480	-344	-210	-75	0	-500) 100 2	00 300	400 500
450	-480	-343	-210	-75	0		, 100 ² 奥行	すき, <i>B</i> (mm)	.00 000
平均値	-480	-345	-211	-75	0	E	図-1 試料50	kgごとの層層	孠
湿潤重量	含水比	乾燥重量	高さ	体積	湿潤密度	乾燥密度	間隙比	相対密度	締固め度
$m_{t}(g)$	w (%)	$m_{\rm d}({\rm g})$	H(mm)	$V(\text{cm}^3)$	$\rho_1(g/cm^3)$	$\rho_{\rm d}({\rm g/cm}^3)$	е	$D_{\rm r}(\%)$	$D_{c}(\%)$
50,000	0.0	50,000	135	31,388	1.593	1.593	0.664	_	84.1
50,000	0.0	50,000	134	31,155	1.605	1.605	0.651	_	84.7
50,000	0.0	50,000	136	31,620	1.581	1.581	0.676		83.5
28,500	0.0	28,500	75	17,438	1.634	1.634	0.622	_	86.3
		平均			1.603	1.603	0.653	_	84.7
上載荷重			水	平応力 <i>p</i> _h (k	:Pa)			鉛直土圧	<i>p</i> _v (kPa)
q (kPa)	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力P _h (kN)	壁面部	中央部
0	0.469	0.830	1.100	1.347	1.432	1.084	0.2432	7.563	6.130
0.79	0.438	0.932	1.239	1.516	1.508	1.109	0.2619	8.012	6.492
1.57	0.385	1.187	1.480	1.807	1.694	1.211	0.3016	8.451	7.008
壁面変位比			水	平応力 p _h (k	:Pa)			鉛直土圧	p _v (kPa)
$\Delta h/h_w(\%)$	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力 $P_{h}(kN)$	壁面部	中央部
0.00	0.385	1.187	1.480	1.807	1.694	1.211	0.3016	8.451	7.008
0.01	0.116	0.881	1.138	1.482	1.384	0.907	0.2295	8.453	7.285
0.02	0.106	0.723	0.939	1.225	1.130	0.740	0.1889	8.631	7.285
0.03	0.100	0.630	0.826	1.080	0.978	0.637	0.1652	8.720	7.374
0.04	0.100	0.595	0.801	1.042	0.917	0.605	0.1577	8.809	7.640
0.05	0.096	0.527	0.759	0.971	0.840	0.547	0.1453	8.809	7.374
0.06	0.080	0.476	0.717	0.932	0.788	0.512	0.1362	8.720	7.463
0.07	0.074	0.428	0.666	0.884	0.737	0.467	0.1264	8.987	7.640
0.08	0.068	0.415	0.646	0.862	0.705	0.457	0.1224	8.987	7.640
0.09	0.064	0.395	0.624	0.842	0.682	0.438	0.1183	8.987	7.551
0.10	0.064	0.389	0.617	0.826	0.663	0.425	0.1159	8.987	7.640
[## #4.]									

5.2.6. 山砂③: Case2(部分載荷)、締固め無し

【備考】 ・最大乾燥密度は実験施設で使用した材料の事前試験結果から引用 ・壁面の移動は上載荷重最大時で実施

図 5.28 山砂③の実験結果(1)

調査	件名		破砕瓦の土	圧測定実験		試験4	平月日	2017/	/1/30
試料 (深	番号 さ)		珪砂7号(全面載荷)		試見	, 険 者	森河日 佐藤	
	壁面の幅	W _w (mm)	49	98	使用材料			珪砂7号	+(乾燥)
壁	壁面の高さ	H _w (mm)	7	8	土粒子密度	$\rho_{\rm s}({\rm g/cm}^3$)	2.6	86
面	全体の高さ	H (mm)	48	30	内部摩擦角	$\phi_{\rm d}({\rm deg})$		39	.0
	壁面の面積	$A_{\rm w}(\rm{mm}^2)$	38,	844	粘着力	c (kPa)		0.	0
	土層の幅	W(mm)	50	0	最小間隙比	e min		0.6	58
供試	土層の奥行	B(mm)	46	5	最大間隙比	emax		1.1	28
体	空間め方法		付き棒で2	00回/10kg	最大乾燥密	度 Odmax(g/g	cm ³)	1.6	20
			深度,z(mm)		Funax(8)	,		
x (mm)	0kg	50kg	100kg	, 150kg	最終層				
0	-480	-345	-215	-82	0	0 0			-
	-480	-347	-217	-83	0	-100	$\rightarrow \phi \phi \phi$	• • • •	- •
100	-480	-3/18	_217		0	(iii)			
150		-340	-217	-02	0	^H _ℕ -200		$\phi \phi \phi \phi$	~
200	-400	3/8	213	-00	0) 逆			
200	-480	-540	-213	-80	0	账 -300			
200	-400	-340	-212	-00	0	-400			
250	-460	-330	-210	-80	0				
350	-480	-348	-210	-/8	0	-500) 	 	• •
400	-480	-350	-212	- /8	0	C) 100 2	00 300	400 500
450	-480	-348	-213	-/8	0		奥仁	「さ, <i>B</i> (mm)	-
半均值	-480	-348	-213	-80	0		凶-1 試料50	kgことの層層	昇
湿潤重量	含水比	乾燥重量	高さ	体積	湿潤密度	乾燥密度	間隙比	相対密度	締固め度
<i>m</i> _t (g)	w(%)	<i>m</i> _d (g)	H(mm)	$V(\text{cm}^3)$	$\rho_{t}(g/cm^{3})$	$\rho_{\rm d}({\rm g/cm}^3)$	е	$D_{\rm r}(\%)$	$D_{\rm c}(\%)$
50,000	0.0	50,000	132	30,690	1.629	1.629	0.649	101.9	100.6
50,000	0.0	50,000	135	31,388	1.593	1.593	0.686	94.0	98.3
50,000	0.0	50,000	133	30,923	1.617	1.617	0.661	99.4	99.8
28,783	0.0	28,783	80	18,600	1.547	1.547	0.736	83.4	95.5
		平均			1.597	1.597	0.683	94.7	98.6
	1								
上載荷重			水	平応力 $p_{h}(k)$	Pa)			鉛直土圧	p _v (kPa)
q (kPa)	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力P _h (kN)	壁面部	中央部
0	0.733	2.418	2.601	2.283	2.401	2.394	0.4984	8.186	2.310
5	1.844	2.421	2.290	2.140	2.445	2.748	0.5395	10.969	2.430
10	2.613	2.751	2.247	2.150	2.528	3.060	0.5962	14.516	2.193
壁面変位比			水	平応力 <i>p</i> _h(k	Pa)			鉛直土圧	p_v (kPa)
$\Delta h/h_w(\%)$	GL-40mm	GL-120mm	GL-200mm	GL-280mm	GL-360mm	GL-440mm	合力 $P_{h}(kN)$	壁面部	中央部
0.00	2.613	2.751	2.247	2.150	2.528	3.060	0.5962	14.516	2.193
0.01	1.508	1.817	1.244	1.215	1.625	1.934	0.3629	15.038	1.954
0.02	1.305	1.569	0.939	0.939	1.339	1.680	0.3019	15.305	1.954
0.03	1.186	1.386	0.765	0.730	1.094	1.464	0.2574	15.660	1.954
0.04	1.158	1.312	0.717	0.695	0.991	1.358	0.2420	15.927	1.954
0.05	1.058	1.193	0.637	0.572	0.817	1.194	0.2125	16.283	1.954
0.06	1.064	1.148	0.617	0.559	0.766	1.097	0.2040	16.461	1.777
0.07	1.010	1.084	0.572	0.524	0.650	1.007	0.1883	16.817	1.777
0.08	1.000	1.058	0.543	0.502	0.628	0.953	0.1819	16.906	1.777
0.09	0.984	1.045	0.524	0.482	0.563	0.866	0.1734	17.084	1.954
0.10	0.990	1.051	0.521	0.476	0.550	0.840	0.1720	17.262	1.777
【備考】	l	1				l	1		

5.2.7. 珪砂7号②: Case1(全面載荷)、締固め有り

図 5.30 珪砂7号: Case1の実験結果

5.2.8.【参考】サイロ効果の検討

		表-1.1 摩擦試驗結果								
ſ	質量	鉛直荷重		計測値(µ)		力	<平荷重P _h ()	(V		
	<i>m</i> (g)	$P_{\rm v}({\rm N})$	珪砂7号	山砂	破砕瓦	珪砂7号	山砂	破砕瓦		
	2,629.1	25.77	-72.00	-96.00	-104.00	8.99	11.99	12.99		
	4,815.7	47.19	-128.00	-170.00	-211.00	15.99	21.23	26.35		
ſ	7,001.5	68.61	-204.00	-253.00	-292.00	25.48	31.60	36.47		

1.壁面摩擦角の検討およびサイロ効果を考慮した土被り圧

図-1.1 土-アルミニウムの摩擦試験結果

表-1.2 土-アルミニウムの壁面摩擦角									
摩排	摩擦係数 $\mu(\tan \delta)$ 壁面摩擦角 $\delta(\deg)$								
珪砂7号	山砂	破砕瓦	珪砂7号	山砂	破砕瓦				
0.3599	0.4579	0.5370	19.79	24.60	28.24				

z	(m)	: 深度
2b	(m)	:壁面の幅
$\sigma_{ m h}$	(kN/m^2)	: 深度zにおける水平応力
$\sigma_{ m v}$	(kN/m^2)	: 深度zにおける鉛直応力
Δf	(kN)	:壁面の摩擦抵抗(<i>K</i> ・σ _v ・tan δ・Δz)
Κ		:土圧係数 (σ_h/σ_v)
δ	(deg)	:壁面摩擦角(土と壁面)

図-1.2 不動壁に囲まれた場合の鉛直土圧

2. 深度と土被り圧の関係

壁面幅

		湿潤単位体積重量	$\gamma_{\rm t}$ (kN/m3)	15.77	8 17.748	15.562	
		土圧係数($K = \sigma_h / \sigma_v$)	Κ	0.50	0 0.500	0.500	
		壁面摩擦角	tan δ	0.359	9 0.4579	0.5370	
深度 z(m)	0.0 2.5 5.0 7.5 10.0		 2 口効果無し 2 口効果有り 2 仕層下端 2 日 5 の 200 	0.00 0.25 (里) 2 0.50 惑 0.75 1.00			5 20
		土被り圧 o _v (kN/	m ²)		土被り)圧 $\sigma_{\! m v}({ m kN/r})$	n ²)
			(a)	圭砂7号			
深度 z(m)	0.0 2.5 5.0 7.5 10.0	サイ サイ 	、ロ効果無し 、ロ効果有り 全土層下端 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0.00 0.25 迎 2 8 3 0.50 8 3 3 5 1.00	0 5 土被 ¹	10 10 2 圧 _σ _v (kN/1	15 20 n ²)
			(b)	山砂			
深度 z(m)	0.0 2.5 5.0 7.5 10.0		ロ効果無し ロ効果有り 全土層下端 	0.00 0.25 〔〕 1.00			5 20
		土被り圧 o _v (kN/	m ²)		土被り) 圧 $\sigma_{\rm v}$ (kN/r	n ²)
			(c) A	破砕瓦			

表-2.1 設計定数

2*b* (m)

珪砂7号

0.465

山砂

0.465

破砕瓦

0.465

図-2.1 深度と土被り圧の関係

図-2.2 深度と土被り圧比の関係

サイロ効果無し									
深度	深度 壁面幅 $\sigma_v = \gamma_t z (kN/m^2)$								
<i>z</i> (m)	2 <i>b</i> (m)	珪砂7号	山砂	破砕瓦					
0.00	0.00	0.00	0.00	0.00					
10.00	0.465	157.78	177.48	155.62					

表-2.2 一般的な土被り圧(b=0.465m)

洲曲		サイロ効果有り		一般的なの土被り圧との比			
(m)	壁面幅 2h(m)	$\sigma_{\rm v}^* = \gamma_{\rm t} b / (h)$	K tan δ)*(1-e ⁽⁺	$-K \tan d \cdot z/b$)		$R = \sigma_v^* / \sigma_v$	
2. (11)	20 (11)	珪砂7号	山砂	破砕瓦	珪砂7号	山砂	破砕瓦
0.020	0.465	0.3131	0.3515	0.3077	0.992	0.990	0.989
0.040	0.465	0.6215	0.6961	0.6083	0.985	0.981	0.977
0.060	0.465	0.9250	1.0340	0.9021	0.977	0.971	0.966
0.080	0.465	1.2240	1.3654	1.1892	0.970	0.962	0.955
0.100	0.465	1.5183	1.6902	1.4697	0.962	0.952	0.944
0.120	0.465	1.8081	2.0087	1.7438	0.955	0.943	0.934
0.140	0.465	2.0935	2.3211	2.0117	0.948	0.934	0.923
0.160	0.465	2.3744	2.6273	2.2734	0.941	0.925	0.913
0.180	0.465	2.6511	2.9275	2.5292	0.933	0.916	0.903
0.200	0.465	2.9235	3.2219	2.7791	0.926	0.908	0.893
0.220	0.465	3.1917	3.5106	3.0233	0.919	0.899	0.883
0.240	0.465	3.4558	3.7936	3.2620	0.913	0.891	0.873
0.260	0.465	3.7159	4.0711	3.4952	0.906	0.882	0.864
0.280	0.465	3.9719	4.3432	3.7230	0.899	0.874	0.854
0.300	0.465	4.2240	4.6100	3.9457	0.892	0.866	0.845
0.320	0.465	4.4723	4.8716	4.1633	0.886	0.858	0.836
0.340	0.465	4.7167	5.1280	4.3759	0.879	0.850	0.827
0.360	0.465	4.9574	5.3795	4.5837	0.873	0.842	0.818
0.380	0.465	5.1944	5.6261	4.7867	0.866	0.834	0.809
0.400	0.465	5.4277	5.8679	4.9851	0.860	0.827	0.801
0.420	0.465	5.6575	6.1049	5.1789	0.854	0.819	0.792
0.440	0.465	5.8837	6.3374	5.3684	0.848	0.812	0.784
0.460	0.465	6.1065	6.5653	5.5535	0.841	0.804	0.776
0.480	0.465	6.3258	6.7887	5.7343	0.835	0.797	0.768
0.500	0.465	6.5418	7.0078	5.9111	0.829	0.790	0.760
0.550	0.465	7.0673	7.5370	6.3355	0.814	0.772	0.740
0.600	0.465	7.5728	8.0408	6.7361	0.800	0.755	0.721
0.650	0.465	8.0592	8.5204	7.1142	0.786	0.739	0.703
0.700	0.465	8.5271	8.9770	7.4711	0.772	0.723	0.686
0.750	0.465	8.9772	9.4116	7.8080	0.759	0.707	0.669
0.800	0.465	9.4103	9.8253	8.1260	0.746	0.692	0.653
0.850	0.465	9.8269	10.2192	8.4261	0.733	0.6//	0.637
0.900	0.405	10.2277	10.5941	8.7094	0.720	0.003	0.622
1.000	0.403	10.0133	11 2008	0.9700	0.706	0.000	0.007
2.000	0.403	16.0400	15 5094	9.2292	0.090	0.030	0.393
2.000	0.403	18 3861	17.0838	12.1373	0.309	0.437	0.390
4 000	0.403	10.3001	17.0000	13.0339	0.308	0.321	0.200
5.000	0.403	19.4033	17.0723	13.3420	0.508	0.249	0.214
6.000	0.403	20 1805	17.0921	13.4330	0.233	0.202	0.173
7 000	0.405	20.1075	17.7742	13.4023	0.213	0.109	0.144
8,000	0.405	20.2751	18 0164	12 /7/2	0.104	0.143	0.124
0.000	0.403	20.3439	18 0202	12 4751	0.101	0.127	0.108
9.000	0.405	20.3003	18.0206	13.4/31	0.143	0.113	0.096
10.000	0.465	20.3767	18.0222	15.4753	0.129	0.102	0.087

表-2.3 サイロ効果を考慮した土被り圧と土被り圧比(b=0.465m)

3. 壁面幅と土被り圧の関係

	24	ISCHI / C //		
		珪砂7号	山砂	破砕瓦
深度	<i>z</i> (m)	0.48	0.48	0.48
湿潤単位体積重量	γ_t (kN/m3)	15.778	17.748	15.562
土圧係数($K = \sigma_h / \sigma_v$)	Κ	0.500	0.500	0.500
壁面摩擦角	tan δ	0.3599	0.4579	0.5370

表-3.1 設計定数

図-3.1 深度と土被り圧の関係

(c) 破砕瓦図-3.2 壁面幅と土被り圧比の関係

サイロ効果無し						
深度	壁面幅	($\sigma_v = \gamma_t z (kN/m^2)$)		
z (m)	2 <i>b</i> (m)	珪砂7号	山砂	破砕瓦		
0.48	0.00	7.5734	8.5190	7.4698		
0.48	50.00	7.5734	8.5190	7.4698		

表-3.2 一般的な土被り圧(z=0.480m)

ेगार करत	壁面幅 2h(m)	サイロ効果有り		一般的なの土被り圧との比			
深度 7(m)		$\sigma_{\rm v}^* = \gamma_{\rm t} b / (b)$	K tan δ)*(1-e ⁽⁺	$-K \tan d \cdot z/b$)		$R = \sigma_v^* / \sigma_v$	
2 (III)	20 (III)	珪砂7号	山砂	破砕瓦	珪砂7号	山砂	破砕瓦
0.48	0.10	3.6049	3.4456	2.6778	0.476	0.404	0.358
0.48	0.20	5.0716	5.1688	4.1985	0.670	0.607	0.562
0.48	0.30	5.7575	6.0391	5.0120	0.760	0.709	0.671
0.48	0.40	6.1501	6.5542	5.5064	0.812	0.769	0.737
0.48	0.50	6.4036	6.8933	5.8366	0.846	0.809	0.781
0.48	0.60	6.5807	7.1330	6.0723	0.869	0.837	0.813
0.48	0.70	6.7113	7.3112	6.2488	0.886	0.858	0.837
0.48	0.80	6.8115	7.4490	6.3859	0.899	0.874	0.855
0.48	0.90	6.8909	7.5586	6.4953	0.910	0.887	0.870
0.48	1.00	6.9554	7.6478	6.5847	0.918	0.898	0.882
0.48	1.10	7.0087	7.7219	6.6591	0.925	0.906	0.891
0.48	1.20	7.0535	7.7844	6.7220	0.931	0.914	0.900
0.48	1.30	7.0918	7.8378	6.7758	0.936	0.920	0.907
0.48	1.40	7.1248	7.8840	6.8224	0.941	0.925	0.913
0.48	1.50	7.1536	7.9243	6.8632	0.945	0.930	0.919
0.48	1.60	7.1789	7.9598	6.8991	0.948	0.934	0.924
0.48	1.70	7.2013	7.9913	6.9310	0.951	0.938	0.928
0.48	1.80	7.2214	8.0195	6.9596	0.954	0.941	0.932
0.48	1.90	7.2393	8.0448	6.9852	0.956	0.944	0.935
0.48	2.00	7.2556	8.0676	7.0084	0.958	0.947	0.938
0.48	2.20	7.2837	8.1073	7.0488	0.962	0.952	0.944
0.48	2.40	7.3073	8.1406	7.0826	0.965	0.956	0.948
0.48	2.60	7.3273	8.1689	7.1114	0.967	0.959	0.952
0.48	2.80	7.3445	8.1933	7.1362	0.970	0.962	0.955
0.48	3.00	7.3595	8.2145	7.1579	0.972	0.964	0.958
0.48	3.20	7.3726	8.2331	7.1768	0.973	0.966	0.961
0.48	3.40	7.3843	8.2495	7.1936	0.975	0.968	0.963
0.48	3.60	7.3946	8.2642	7.2086	0.976	0.970	0.965
0.48	3.80	7.4039	8.2774	7.2220	0.978	0.972	0.967
0.48	4.00	7.4122	8.2892	7.2342	0.979	0.973	0.968
0.48	4.20	7.4198	8.3000	7.2452	0.980	0.974	0.970
0.48	4.40	7.4267	8.3098	7.2552	0.981	0.975	0.971
0.48	4.60	7.4330	8.3187	7.2643	0.981	0.976	0.972
0.48	4.80	7.4388	8.3269	7.2727	0.982	0.977	0.974
0.48	5.00	7.4441	8.3345	7.2805	0.983	0.978	0.975
0.48	5.50	7.4557	8.3511	7.2974	0.984	0.980	0.977
0.48	6.00	7.4655	8.3649	7.3116	0.986	0.982	0.979
0.48	6.50	7.4737	8.3766	7.3236	0.987	0.983	0.980
0.48	7.00	7.4808	8.3867	7.3339	0.988	0.984	0.982
0.48	7.50	7.4869	8.3954	7.3429	0.989	0.985	0.983
0.48	8.00	7.4923	8.4031	7.3507	0.989	0.986	0.984
0.48	8.50	7.4970	8.4098	7.3576	0.990	0.987	0.985
0.48	9.00	7.5012	8.4159	7.3638	0.990	0.988	0.986
0.48	9.50	7.5050	8.4212	7.3693	0.991	0.989	0.987
0.48	10.00	7.5084	8.4261	7.3743	0.991	0.989	0.987
0.48	12.00	7 5192	8 4 4 1 5	7 3901	0 993	0.991	0.989
0.48	14.00	7 5269	8 4525	7 4014	0 994	0.997	0.991
0.48	16.00	7 5327	8 4608	7 4090	0.005	0.992	0.002
0.10	18.00	7 5377	8 1672	7 /165	0.005	0.000	0.002
0.40	20.00	7.5372	8 1721	7 /218	0.775	0.004	0.004
0.40	20.00	7.5400	0.4/24	1.7210	0.770	0.775	0.774

表-3.3 サイロ効果を考慮した土被り圧と土被り圧比(z=0.480m)

6. その他

6.1. 主な締固め工法一覧

参考として陸上施工および海上施工における、主な締固め工法を次頁以降に示す。

表 6.1 陸上施工の主な締固め工法(1/2)

原	理	圧密・締固め					
丁法名称		陸上コンポーザー	SAVEコンポーザー	リソイルコンポーザー	ノンフローコンポーザー		
14	ግ ዋጉ	(打戻し式サンドコンパクションパイル工法)	(静的締固め砂杭工法)	(建設発生土利用コンポーザー)	(大口径砕石コンパクションパイル工法)		
工法概要		地盤中に振動機(バイプロハンマー)を用いてケーシングを貫入させ、所定 の深度よりこれを引き抜き、材料である砂などを排出し、更にこれを打ち戻す ことにより良く締め固めた砂杭を造成する。 緩い砂地盤に対しては密度の増加により地盤全 体を締固め、粘性土地盤に対しては粘性土と砂杭 の複合地盤を形成し地盤を強化する。陸上および 海上など幅広く様々な環境において適用されてい	地盤中に油圧式の強制昇降装置を用いた回転 圧入施工によりケーシングを貫入させ、材料砂 の排出打ち戻しを細かく行う「ウェーブ施工」 により締め固めた砂杭を造成する静的なサンド コンパクションパイル工法(静的締固め砂杭工 法)。	中詰め材を砂の代わりに、建設発生土に細粒 分含有率が25%程度以下の土材料を用いてサン ドコンパクションパイルを打設する工法。地盤 改良と建設発生土の処分を同時に行うことを可 能としている。 粘性土地盤を対象とする場合は人工排水材を 杭の周囲に打設して地盤の排水効果の補助とし	コンパクションパイル工法の一種でオール ケーシングを用いケーシング内の土砂を排出 して砕石や砂利等を投入し、モンケンで締め 固めることによりよく締まった大口径の砕石 杭を低振動で造成する工法。		
			(位置決約) (注入元7) (注意現元) (注意現元) (注入元7) (注) (注) (注) (注) (二7) (注) (注) (二7) (注) (二7) (
適用	地盤	砂質土、粘性土、有機質土等ほとんど全ての土質	砂質土、粘性土、有機質土等ほとんど全ての土 質	砂質土、粘性土、有機質土等ほとんど全ての土 質	主に粘性土、有機質土		
施工	深度	45m程度	25m程度	25m程度	20m程度		
使用	材料	砂、砕石、(スラグ、再生砕石)等	砂、砕石、(スラグ、再生砕石)等	建設発生土・石炭灰・鉱滓・(人口排水材)	主に砕石、砂利等		
檀 淮 仕 梯		ケーシング径φ400mm (標準)	ケーシング径φ400mm	ケーシング径φ400mm	ケーシング径φ1000mm程度		
	1	<u>出来上がり径o700mm(標準)</u>	出来上がり径φ700mm	出来上がり径φ700mm	出来上がり径φ1000mm程度		
施工	実績		H17年度現在400件以上	中部電力碧南火力発電所他数件	30件程度		
適用	目的	液状化対策、盛土の安定、沈下対策、タンク基礎等	液状化対策、盛土の安定、沈下対策、タンク基 礎等	液状化対策、盛土の安定、沈下対策、タンク基 礎等	盛土の安定、沈下対策		
	振動		ほとんど無い	比較的大きい	比較的小さい		
環境	騒音	比較的大きい	小さい	比較的大きい	比較的小さい		
	変位	比較的大きい	比較的小さい	比較的大きい	比較的小さい		
長所		 ・粘性土、砂質土など殆ど全ての地盤に対して効果を有する。 ・締固めによる密度の増加、地盤の水平抵抗の増加、複合地盤によるせん断抵抗の増加および沈下量の低減、ドレーンとしての圧密促進など様々な改良効果を併せ持つ。 	 ・施工される砂杭強度及び改良効果は陸上コン ボーザーと同等である。 ・バイブロを用いず強制昇降装置を用いて静的 に締固めることから、打診による乱れの影響 が少ない。 	 ・従来廃棄処分されてきた建設発生土を有効利用して発生土処分の費用が節約できる。 	 ・振動、騒音の影響は小さい。 ・大断面の砕石杭を確実に施工できる。 ・他のコンポーザー工法に比べると施工機の 高さが低いため空域制限下での施工には有 利である。 		
短所		 ・騒音、振動および周辺構造物の変位などの周辺環境への配慮が必要となる。 ・粘性土に対しては打設直後に乱れの影響がある。(1~3ヶ月程度で強度を回復する) 	 ・バイブロ式のコンポーザーと比較すると施工 能率が落ちるためやや割高になる。 	 ・使用する材料や対策の目的によっては人口排 水材を併用する必要がある。 	・施工費が割高なため近年ではSAVEコン ボーザーに代替される傾向にある。		
コスト (材1	※) [共)	4,000円/m(φ700m)	6,000円/m (φ700mm)	3,500円/m (人口排水材及び中詰材費は除く)	20,000円/m(φ1000mm)		
能率	*)	165m/ Π (ω700mm)	140m/日 (@700mm)	150m/ E	20m/日 (@1000mm)		
		n an		• • • • •			

※)杭長15mを標準としてコスト・能率を換算(杭長その他条件により変動する)。

原	理		緒	
丁计女称		バイブロロッド	マンモスバイブロタンパー	コンパクショングラウチングデンバーシステム
上法	治孙	(振動棒工法)	(表層締固め工法)	(静的圧入締固め工法)
工法概要		バイブロハンマーに接続した各種の特殊圧入ロッドを 振動圧入することによって、緩い砂質地盤を締め固める 工法で、ロッドの先端および側面形状によりNFコンパク ション工法、KFコンパクション工法の2つのタイプがあ る。	砂質地盤の支持力の増大を図る表層締固め工法の一種 で、強力な振動機と大型のタンパーを組み合わせた密度 増大工法であり、表層地盤の締め固めを対象としたもの である。クローラークレーンにバイブロハンマーを直結 したダンパーを吊りながら地表面を締固める。	きわめて流動性の低いモルタルなどの注入材を地盤に注入 し、地盤を押し広げることで締固め、密度を増大させ地震時 の液状化を防止する工法。
				Image: second
適用	地盤	緩い砂質地盤	砂質土	緩い砂地盤
施工	深度	20m程度	3~5m(改良効果が及ぶ深度)	20m程度
使用	材料	現地土、砕石、スラグ等	なし	セメント、粒度調整骨材
標準	仕様	出来上がり径φ500~600mm程度	\Box 2.0×2.0m, \Box 3.0×3.0m	φ700mm相当
施工	実績	50件程度	間両国際売港など20位程度	東京国際空港旅客ターミナル等28件
適用目的		3011住及	肉口国际主体なと2017住反	(2005年研究会実績)
1 /22 / 11	目的	3011 程及 護岸・岸壁背面等の液状化対策	タンク基礎、空港路床等表層締固め	(2005年研究会実績) 既設構造物付近・直下、狭隘な場所での新設構造物
X2/11	目的振動	300 護岸・岸壁背面等の液状化対策 比較的大きい	 (A) 国际主体なことに住住 (A) クンク基礎、空港路床等表層締固め (L) 比較的大きい 	(2005年研究会実績) 既設構造物付近・直下、狭隘な場所での新設構造物 ほとんど無い
環境	目的 振動 騒音	300 護岸・岸壁背面等の液状化対策 比較的大きい 比較的大きい	 (A) 国际主体などのF1在及 タンク基礎、空港路床等表層締固め 比較的大きい 比較的大きい 	(2005年研究会実績) 既設構造物付近・直下、狭隘な場所での新設構造物 ほとんど無い 小さい
環境	目的 振動 騒音 変位	護岸・岸壁背面等の液状化対策	肉日回味主体なことに住皮 タンク基礎、空港路床等表層締固め 比較的大きい 比較的大きい 比較的小さい	 (2005年研究会実績) 既設構造物付近・直下、狭隘な場所での新設構造物 ほとんど無い 小さい 大きい(注入順序によって対応可能)
環境	目前振動 重変位 長所	3011 星及 護岸・岸壁背面等の液状化対策 比較的大きい 比較的大きい 比較的小さいが注意を要する ・液状化防止に効果的である。 ・施工機械が機動性に富み、施工能率が高い経済的な 工法である。 ・使用材料に現地土が利用できる。	 肉は国际主体なと2017年度 タンク基礎、空港路床等表層締固め 比較的大きい 比較的小さい ・機動性に優れ、施工能率もよいため安価である。 ・コンポーザーやバイブロロッドなどと併用することに より深層から表層に至る締固めを確実に行うことができる。 	 (2005年研究会実績) 既設構造物付近・直下、狭隘な場所での新設構造物 ほとんど無い 小さい 大きい(注入順序によって対応可能) ・特殊ポンプを用いた静的圧入により、無振動、低騒音で地盤を締め固める。 ・地盤/構造物変位が小さく、既設構造物にも適用可能。 ・小型ボーリングマシンが設置できる程度の作業空間で施工可能。 ・対象地盤の上部に硬い地盤が存在しても適用可能。
環境特徴	目的 振動音 変位 長所 短所	 3011 社及 護岸・岸壁背面等の液状化対策 比較的大きい 比較的大きい 比較的小さいが注意を要する ・液状化防止に効果的である。 ・施工機械が機動性に富み、施工能率が高い経済的な 工法である。 ・使用材料に現地土が利用できる。 ・細粒分が多いと改良効果が低下する。 ・改良対象土層上に粘性土層が挟んでいる場合は材料の 供給ができない場合がある。 ・材料の使用量の管理が難しい(試験施工等で確認)。 	タンク基礎、空港路床等表層締固め	(2005年研究会実績) 既設構造物付近・直下、狭隘な場所での新設構造物 ほとんど無い 小さい 大きい(注入順序によって対応可能) ・特殊ポンプを用いた静的圧入により、無振動、低騒音で地 盤を締め固める。 ・地盤/構造物変位が小さく、既設構造物にも適用可能。 ・小型ボーリングマシンが設置できる程度の作業空間で施工 可能。 ・対象地盤の上部に硬い地盤が存在しても適用可能。 ・砂杭による締固めに比べ、工費・工期ともに大きい。
環境 環境 特徴	目的動 販売 変位 長所 短所 ※) 工共)	 3011 星役 護岸・岸壁背面等の液状化対策 比較的大きい 比較的大きい 比較的小さいが注意を要する ・液状化防止に効果的である。 ・施工機械が機動性に富み、施工能率が高い経済的な 工法である。 ・使用材料に現地土が利用できる。 ・御粒分が多いと改良効果が低下する。 ・砂良対象土層上に粘性土層が挟んでいる場合は材料の 供給ができない場合がある。 ・材料の使用量の管理が難しい(試験施工等で確認)。 2,600円/m (φ600mm、材料費含む) 	タンク基礎、空港路床等表層締固め 比較的大きい 比較的大きい 比較的小さい ・機動性に優れ、施工能率もよいため安価である。 ・コンポーザーやバイブロロッドなどと併用することにより深層から表層に至る締固めを確実に行うことができる。 ・振動、騒音の影響が大きく市街地などでの施工は困難である。 ・対象深度の深い改良には不適。 800円/m ² (タンパーサイズ2.0×2.0m)	 (2005年研究会実績) 既設構造物付近・直下、狭隘な場所での新設構造物 ほとんど無い 小さい 大きい(注入順序によって対応可能) ・特殊ポンプを用いた静的圧入により、無振動、低騒音で地盤を締め固める。 ・地盤/構造物変位が小さく、既設構造物にも適用可能。 ・小型ボーリングマシンが設置できる程度の作業空間で施工可能。 ・対象地盤の上部に硬い地盤が存在しても適用可能。 ・砂杭による締固めに比べ、工費・工期ともに大きい。 31,000円/m(17 [*] ラトン2マシン、切削マシン2) 35,000円/m(17 [*] ラトン1マシン、切削マシン1)
環境 環境 特徴 コストコ 能率	目的 服 変位 長 所 短 第 ※) ※)	 3011 社及 護岸・岸壁背面等の液状化対策 比較的大きい 比較的小さいが注意を要する ・液状化防止に効果的である。 ・施工機械が機動性に富み、施工能率が高い経済的な 工法である。 ・使用材料に現地土が利用できる。 ・細粒分が多いと改良効果が低下する。 ・改良対象土層上に粘性土層が挟んでいる場合は材料の 供給ができない場合がある。 ・材料の使用量の管理が難しい(試験施工等で確認)。 2,600円/m (φ600mm、材料費含む) 310m/円 (φ600mm) 	肉口回床主体なと20斤住反 タンク基礎、空港路床等表層締固め 比較的大きい 比較的大きい 比較的小さい ・機動性に優れ、施工能率もよいため安価である。 ・コンポーザーやバイブロロッドなどと併用することに より深層から表層に至る締固めを確実に行うことがで きる。 ・振動、騒音の影響が大きく市街地などでの施工は困難 である。 ・対象深度の深い改良には不適。 800円/m ² (タンパーサイズ2.0×2.0m) 460m ² /円 (タンパーサイズ2.0×2.0m)	 (2005年研究会実績) 既設構造物付近・直下、狭隘な場所での新設構造物 ほとんど無い 小さい 大きい(注入順序によって対応可能) ・特殊ポンプを用いた静的圧入により、無振動、低騒音で地盤を締め固める。 ・地盤/構造物変位が小さく、既設構造物にも適用可能。 ・小型ボーリングマシンが設置できる程度の作業空間で施工可能。 ・対象地盤の上部に硬い地盤が存在しても適用可能。 ・砂杭による締固めに比べ、工費・工期ともに大きい。 31,000円/m(17 [*] ラトン2マシン、切削マシン2) 35,000円/m(17 [*] ラトン2マシン、切削マシン2) 16m/日(17 [*] ラトン2マシン、切削マシン2)

表 6.2 陸上施工の主な締固め工法(2/2)

※)杭長15mを標準としてコスト・能率を換算(杭長その他条件により変動する)。

181

原	理	圧密・締固め			
工注之称		海上コンポーザー	SAVEマリン		
上伝	石 仰	(打ち戻し式サンドコンパクションパイル工法)	(無振動低騒音型海上コンポーザー)		
工法名称		(1) 5次 シスクションパイノンコンパイル工法) 地盤中に振動機(バイブロハンマー)を用いてケーシングを貫入させ、所定の深度よりこれを引き抜き、材料である砂などを排出し、更にこれを打ち戻すことにより良く締め固めた砂杭を造成する。 緩い砂地盤に対しては密度の増加により地盤全体を締固め、粘性土地盤に対しては密度の増加により地盤全体を締固め、粘性土地盤に対しては粘性生と砂杭の複合地盤を形成し地盤を形成し地盤を超において適用されている最も代表的なサンドコンパクションパイル工法。	強制昇降装置を用いて、ケーシングを貫入させ、材料 砂の排出打ち戻しを細かく行う「ウェーブ施工」により 締め固めた砂杭を造成する静的な海上サンドコンパク ションパイル工法(静的締固め砂杭工法)。		
適用	地盤	砂質土、粘性土、有機質土等ほとんど全ての土質	砂質土、粘性土、有機質土等ほとんど全ての土質		
施工	<u> </u>	[70m程度 (水面下)	50m程度(水面下)		
使用	材料	砂、砕石、(スフク、再生砕石)等			
標準	仕様	ゲージング径 \$800~1200mm	グージング径 ϕ 700mm		
14	<u>→ /</u> #	出来上がり径φ1000~2000mm	出来上がり径φ1000mm(液状化対策の場合)		
施工	<u> 美領</u>	非常に多い	愛知県衣浦護岸上事 		
適用	日的	護岸・岸壁防波堤の基礎等	護 岸 ・ 岸 壁 防 波 堤 の 基 健 等		
THE LATE	振動	比較的大きい	ほとんど無い		
垛児	<u> 輸音</u>	比較的大きい	小さい		
	泼位	比較的大さい	比較的小さい		
長所特徴		 ・世球+30044度の回直換まで幅広い範囲で収入 仕様の設定が可能であり、改良目的に応じた有効な対策を講じること が可能である。 ・諸性北、砂質土など殆ど全ての地盤に対して効果を有する。 ・縮固めによる密度の増加、地盤の水平抵抗の増加、複合地盤によるせん断抵抗の増加および沈下量の低減、ドレーンとしての圧密促進など <u>様々な改良効果を併せ持つ。</u> ・騒音、振動、周辺構造物の変位など周辺環境への配慮が必要となる。 ・粘性土に対しては打設直後に乱れの影響がある。(1~3ヶ月程度で強 	 ・バイブロを用いず、強制昇降装置を用いて静的に締固 めることから、周辺への振動・騒音等の影響がほとん どない。 ・バイブロ式のコンポーザーと比較すると施工能率が落 ちるため割高となる。 		
	短所	度は回復する)			
		 砂杭打設による盛り上りを考慮する必要がある。 			
コスト	і №	30,000円/m(3連装φ2000mm 50m級 杭長 30m)	37,000円/m(1連装φ1000mm)		
(材コ	[共]		·		
能率	※)	340m/ 曰 (90m/日(1連装)		

表 6.3 海上施工の主な締固め工法

※)杭長15mを標準としてコスト・能率を換算(杭長その他条件により変動する)。
6.2. 標準材料と破砕瓦の材料費の概算比較

参考として、想定する用途の標準材料と破砕瓦の運搬費を加味した材料費の概算比較を 行った結果を以下に示す。標準材料および破砕瓦の運搬費込みの材料費の算出条件は表 6.4~表 6.5 に示す通りである。表 6.5 の供給量試算は、H27d の愛知県陶器瓦工業組合へ のヒアリング結果に基づく破砕瓦の年間発生量(約 6~6.5 万トン)とその内訳、最大貯蔵可能 量を考慮して算出した工事現場への供給量の概算値である。

表 6.4 標準材料と破砕瓦の材料費の算出条件

項目	標準材料	破砕瓦
材料費	愛知県内の港湾工事で	愛知県陶器瓦工業組合へのヒアリング結果に基づく。
	の実勢調査に基づく現	表 6.5 で試算した想定工事への供給量を、港湾土木請
275 681 井	地渡し価格(運搬費込	負工事積算基準(平成28年度改訂版) ²⁾ に基づいて出荷工
連搬資	み)を参照。	場からの運搬距離(10km、50km、100km)に応じた運搬費
		を算出。

表 6.5 破砕瓦の供給可能量の試算(概算)

		破碎	砕瓦
		瓦用原材料	リサイクル資材
		粘土への還元	·土木資材
	左門	60,	000
発生量(t)	牛间	37,000	23,000
	月別	3,083	1,917
最大貯蔵可能量(t)		13,	000
メリッフルマリング語シーサ			

※H27dヒアリング調べに基づく。

港湾施設への供給可能量の詞	算	備考
供給可能量(t)	7,667	リサイクル資材・土木資材の月別発生量*4ヶ月分
貯蔵可能量(t)	13,000	
工期内の供給可能量(t)	20,667	供給可能量+貯蔵可能量
破砕瓦の湿潤密度(t/m ³)	1.49	湿潤密度試験結果より
工事現場への供給量(m ³)	13,870	エ期内の供給可能量/湿潤密度

運搬費(陸上運搬 or 海上運搬)を考慮した破砕瓦(0-20mm、5-20mm)と標準材料との価格比 を表 6.6~表 6.7、図 6.1 に示す。この結果より以下の可能性があることがいえる。

- ① 標準材料との比較から、破砕瓦 0-20mm を用いると経済的に有利となる。
- ② 標準材料との比較から、運搬距離が約 40km 圏内の地域であれば、破砕瓦は経済的 に有利となる。

²⁾公益社団法人日本港湾協会:港湾土木請負工事積算基準(平成 28 年度改訂版)、平成 28 年 4月

				運搬距離		備考
			10 km	50 km	100 km	
	【裏埋材】砂	陸上運搬	0.97	2.17	3.68	ダンプトラック(10t)運搬 バックホウ山積0.8m ³ 、土砂、DID無
価格	した こう しん	海上運搬	1.41	2.16	3.10	ガット船海上運搬投入 3.0m ³ 、850m ³ 積、運8h航4h
胎	【裏込材】栗石	陸上運搬	0.52	1.15	1.95	
	との比較	海上運搬	0.75	1.15	1.64	

表 6.6 運搬費を考慮した破砕瓦(0-20mm)と標準材料の価格比

表 6.7 運搬費を考慮した破砕瓦(5-20mm)と標準材料の価格比

				運搬距離		備考
			10 km	50 km	100 km	
	【裏埋材】砂	陸上運搬	2.55	3.75	5.25	ダンプトラック(10t)運搬 バックホウ山積0.8m ³ 、土砂、DID無
価格	したの比較 価	海上運搬	2.99	3.74	4.68	ガット船海上運搬投入 3.0m ³ 、850m ³ 積、運8h航4h
間比	【裏込材】栗石	陸上運搬	1.35	1.99	2.79	
	との比較	海上運搬	1.59	1.99	2.48	

※1)価格比=破砕瓦の価格(運搬費込み)/標準材料の価格(運搬費込み)より算出。 ※2)破砕瓦の価格は、愛知県陶器瓦工業組合殿へのヒアリング価格(工場渡し)に、別途運搬費を考慮して算出。 ※3)標準材料の価格は、愛知県内の実勢調査価格(運搬費込み)を参照して設定。

6.3. 土留矢板に作用する主働土圧の低減効果

標準材料(例えば砂や栗石)と破砕瓦の単位体積重量と比較すると、破砕瓦は軽量である ことから土圧低減材料として有効であることがいえる。

そこで、図 6.2 に示す断面を仮定し、気中部の雑石(図面中の黄色に着色した範囲)を破 砕瓦に代替した場合における岸壁主要部材の安定計算を行った。主な設計条件は表 6.8 に 示す通りである。このうち、本技術資料ではモデル断面においてより厳しい条件である変 動状態(レベル1地震動)に関する試計算を行った。

図 6.2 モデル断面

上載荷重	永続状態	W=10.0 kN/m ²
	変動状態(レベル1地震動)	$W = 5.0 \text{ kN/m}^2$
照査用震度		kh=0.25
設計水深		-12.60m
潮位	H.W.L.	+2.61m
	L.W.L.	+0.04m
残留水位	R.W.L.	+1.75m
タイ材取付高		+2.00m
耐用年数		50 年
埋立材料	ケース1:雑石	γ t=18.0 kN/m ³ ϕ =35.0 °
	ケース2:破砕瓦	$\gamma_{t} = 14.2 \text{ kN/m}^{3}, \phi = 44.6^{\circ}$

表 6.8 設計条件一覧

変動状態(レベル1地震動)における照査結果一覧を表 6.9に示す。

破砕瓦を適用することで作用土圧の低減を図ることができ、モデル検討断面においては タイ材と控え工の諸元を落とすことが可能となり、より経済的な断面諸元を設定すること が可能となることが確認できた(全体の鋼材料としては約 3.5%の縮減を達成)。各材料を想 定した変動状態の土圧・残留水圧分布図は次頁に示す通りである。

	埋立材料	ケ	-ス1	:雑石	- (ケ-	-72:	破砕瓦		備考
	諸元		φ1600 x t18 (L-]		
前面	応力度(N/mm ²)	309.1	Ś	315.0	ок	290.4	\leq	315.0	ок	
矢板	根入れ深度(m)		-32.163				-32.	163		
	施工根入れ深度(m)		-32.200				-32.	200		
	諸元	タイロープ: TR-450 タイロープ: TR-401					約12.2%の鋼材量縮減			
タ	降伏荷重(kN)	2859.995	≦	2942.0	ОК	2356.41	Ś	2621.3	ОК	
オ材	タイ材長さ(m)		33.7	784		3		33.579		
	施工タイ材長さ(m)	34.000				34.000				
腹	諸元			2[-380	×100	× 10.5 × 10	6.0			
起し	応力度(N/mm²)	211.2	\leq	235.0	ОК	174	\leq	235.0	ок	
	諸元	φ	1100) x t11		¢	1000) x t11		約14.0%の鋼材量縮減
控	応力度(N/mm²)	286	≦	315.0	ОК	269.8	Ś	315.0	ОК	
えエ			-12.	547			-11.	722		
			-12.	600			-11.	800		

表 6.9 モデル断面の変動状態(レベル1地震動)の照査結果一覧

※全体鋼材量として約3.5%の鋼材量縮減

6.3.1. 雑石を想定した場合の土圧・残留水圧分布図

6.3.2. 破砕瓦を想定した場合の土圧・残留水圧分布図

参考文献

- (第1) 森河由紀弘、前田健一、張鋒:リサイクル材料である破砕瓦の有効利用(第1回)「地盤 材料として見た破砕瓦の物理特性や力学特性」、2014.(巻末に添付)
- 2) 森河由紀弘、前田健一、張鋒: リサイクル材料である破砕瓦の有効利用(第2回)「破砕 瓦を用いた液状化対策」、2014. (巻末に添付)
- 前田健一、森河由紀弘:平成27年度破砕瓦の港湾工事等への適用性検討委員会(第1回 (案))、2016.
- 4) 愛知県陶器瓦工業組合:瓦の生産過程で発生する規格外瓦の有効利用に関する調査研 究報告書、平成 21 年 2 月
- 5) 堀智之、張鋒、前田健一:「規格外瓦破砕材シャモットの地盤材料としての物理・力 学特性」、土木学会回年次学術講演会講演概要集, Vol.66, No.III-413, pp825-826, 2011.
- 6) 経済産業省産業技術環境局:基準認証ユニット「コンクリート用及び道路用スラグ骨材の利用促進を図るために(資料 2)」、平成 23 年 7 月 13 日

- 7) 国土交通省港湾局:港湾空港等におけるリサイクルガイドライン(改訂)、平成 27 年 12月
- 8) 国土交通省港湾局: 浚渫土砂の海洋投入及び有効利用に関する技術指針(改訂案)、平 成 25 年 7 月
- 9) 愛知県公式 web サイト、建設企画課「44 万トンを超える再生資源が有効に活用されました~平成 26 度あいくる材の利用実績集計」、2015 年 7 月更新 <http://www.pref.aichi.jp/soshiki/kensetsu-kikaku/0000085304.html>

添 付 資 料

<15:00~15:10> ◇財団御挨拶: 公益財団法人科学技術交流財団 業務部長 出口 和光 氏
<15:10~15:30> ◇座長挨拶,研究会趣旨説明: 名古屋工業大学 都市社会工学科 助教 森河 由紀弘
<15:30~15:45> ◇メンバー紹介: 参加者全員
<15:45~16:45> ◇話題提供:「地盤材料として見た破砕瓦の物理特性やカ学特性」 名古屋工業大学 都市社会工学科 助教 森河 由紀弘
<16:45~16:55> ◇座長総括、次回予定等:座長
<16:55~17:55> ライトパーティー

土壤の汚染に係	る環境基	<u></u> [] [] [] [] [] [] [] [] [] [] [] [] []	;示第46号)−1	
分析項目	単位	調査結果	基準値	判定
カドミウム	mg/L	0.001未満	0.01mg/L 以下	0
全シアン	mg/L	検出されず	未検出	0
有機燐(りん)	mg/L	検出されず	未検出	0
鉛	mg/L	0.005未満	0.01mg/L 以下	0
六価クロム	mg/L	0.01未満	0.05mg/L 以下	0
砒(ひ)素	mg/kg	0.4未満	15mg/土壤1kg 未満	0
総水銀	mg/L	0.0005未満	0.0005mg/L 以下	0
アルキル水銀	mg/L	検出されず	未検出	0
РСВ	mg/L	検出されず	未検出	0
銅	mg/kg	1.8	125mg/土壌1kg 未満	0
ジクロロメタン	mg/L	0.002未満	0.02mg/L 以下	0
四塩化炭素	mg/L	0.0002未満	0.002mg/L 以下	0
1, 2ージクロロエタン	mg/L	0.0004未満	0.004mg/L 以下	0
1, 1ージクロロエチレン	mg/L	0.002未満	0.02mg/L 以下	0
シスー1、2-ジクロロエチレン	mg/L	0.004未満	0.04mg/L 以下	0

土壌の汚染に係	る環境基	[準(環境省告	·示第46号)-2	
分析項目	単位	調査結果	基準値	判定
1, 1, 1ートリクロロエタン	mg/L	0.001未満	1mg/L 以下	0
1, 1, 2ートリクロロエタン	mg/L	0.0006未満	0.006mg/L 以下	0
トリクロロエチレン	mg/L	0.002未満	0.03mg/L 以下	0
テトラクロロエチレン	mg/L	0.0005未満	0.01mg/L 以下	0
1, 3ージクロロプロペン	mg/L	0.0002未満	0.002mg/L 以下	0
チウラム	mg/L	0.0006未満	0.006mg/L 以下	0
シマジン	mg/L	0.0003未満	0.003mg/L 以下	0
チオベンカルブ	mg/L	0.002未満	0.02mg/L 以下	0
ベンゼン	mg/L	0.001未満	0.01mg/L 以下	0
セレン	mg/L	0.002未満	0.01mg/L 以下	0
ふっ素	mg/L	0.11	0.8mg/L 以下	0
ほう素	mg/L	0.02未満	1mg/L 以下	0

◎ 破砕瓦の安全性	3【農】	用地・土 壌	【汚染基準】	
農用地における土壌 (中の重金 昭和59年	属等の蓄積D 環水土第149	う止に係る管理基準 号)	
分析項目	単位	調査結果	基準値	判定
 亜鉛	mg/kg	49	120mg/kg	0
<mark>土壤汚染対策法に</mark> 分析項目	基づく含 単位	<mark>有量基準(環</mark> : 調査結果	境省告示第19号) 基準値	判定
カドミウム及びその化合物	mg/kg	5未満	150mg/L	0
六価クロム化合物	mg/kg	2未満	250mg/kg 以下	0
シアン化合物	mg/kg	1未満	50mg/kg以下 (遊離シアン)	0
水銀及びその化合物	mg/kg	0.05未満	15mg/kg 以下	0
セレン及びその化合物	mg/kg	0.5未満	150mg/kg 以下	0
鉛及びその化合物	mg/kg	5未満	150mg/kg 以下	0
砒素及びその化合物	mg/kg	0.5未満	150mg/kg 以下	0
ふっ素及びその化合物	mg/kg	10未満	4,000mg/kg 以下	0
ほう素及びその化合物	mg/kg	5未満	4,000mg/kg 以下	0

産業廃棄物の最終処分(海洋投入処分)に係る基準(環境省告示第13号)-1						
分析項目	単位	調査結果	基準値	判定		
アルキル水銀化合物	mg/L	検出されず	未検出	0		
水銀又はその化合物	mg/L	0.0005未満	0.0005mg/L 以下	0		
カドミウム又はその化合物	mg/L	0.005未満	0.01mg/L 以下	0		
鉛又はその化合物	mg/L	0.01未満	0.01mg/L 以下	0		
有機燐〈りん〉化合物	mg/L	検出されず	未検出	0		
六価クロム化合物	mg/L	0.04未満	0.05mg/L 以下	0		
砒〈ひ〉素又はその化合物	mg/L	0.005未満	0.01mg/L 以下	0		
シアン化合物	mg/L	検出されず	未検出	0		
PCB	mg/L	検出されず	未検出	0		
トリクロロエチレン	mg/L	0.002未満	0.03mg/L 以下	0		
テトラクロロエチレン	mg/L	0.001未満	0.01mg/L 以下	0		
ジクロロメタン	mg/L	0.002未満	0.02mg/L 以下	0		
四塩化炭素	mg/L	0.001未満	0.002mg/L 以下	0		
1, 2ージクロロエタン	mg/L	0.001未満	0.004mg/L 以下	0		
1, 1ージクロロエチレン	mg/L	0.002未満	0.02mg/L 以下	0		

産業廃棄物の最終処分(海洋	并投入処	分)に係る基準	準(環境省告示第13	号)-2
分析項目	単位	調査結果	基準値	判定
シスー1、2-ジクロロエチレン	mg/L	0.004未満	0.04mg/L 以下	0
1, 1, 1ートリクロロエタン	mg/L	0.001未満	1mg/L 以下	0
1, 1, 2ートリクロロエタン	mg/L	0.001未満	0.006mg/L 以下	0
1, 3ージクロロプロペン	mg/L	0.001未満	0.002mg/L 以下	0
チウラム	mg/L	0.0006未満	0.006mg/L 以下	0
シマジン	mg/L	0.0003未満	0.003mg/L 以下	0
チオベンカルブ	mg/L	0.02未満	0.02mg/L 以下	0
ベンゼン	mg/L	0.001未満	0.01mg/L 以下	0
セレン又はその化合物	mg/L	0.005未満	0.01mg/L 以下	0
有機塩素化合物	mg/L	0.8未満	1mg/L 以下	0
銅又はその化合物	mg/L	0.01未満	0.14mg/L 以下	0
亜鉛又はその化合物	mg/L	0.01	0.8mg/L 以下	0
弗〈ふつ〉化物	mg/L	0.2	3mg/L 以下	0
ベリリウム又はその化合物	mg/L	0.02未満	0.25mg/L 以下	0
クロム又はその化合物	mg/L	0.02未満	0.2mg/L 以下	0

Г

産業廃棄物の最終処分(海	洋投入処	分)に係る基準	準(環境省告示第1	3号)-3
分析項目	単位	調査結果	基準値	判定
ニッケル又はその化合物	mg/L	0.03未満	0.12mg/L 以下	0
、 ナジウム又はその化合物	mg/L	0. 10	0.15mg/L 以下	0
フェノール類	mg/L	0.025未満	0.2mg/L 以下	0
(環境省告示第46号) ・ 農用地における土壌中の	+ 重金属等の	著積防止に係	くる管理基準	יעטי 🗈

破砕瓦の盛土材としての性質(0-20mm, 0-5mm)					
項目		0-20mm	0-5mm		
すり減り試験 (JIS A 1121)	すり減り減量(%)	27.6	_		
液性限界・塑性限界試験 (JIS A 1205)	液性限界 塑性限界 塑性指数	NP NP NP	NP NP NP		
土の締固め試験 (JIS A 1210)	最大乾燥密度(g/cm ³) 最適含水比(%)	1.630 9.9	1. 642 14. 8		
CBR試験 (JIS A 1211)	膨張比(%) 設計CBR(%):舗装用 修正CBR(%):盛土用	0. 003 78. 8 —			
土の透水試験 (JIS A 1218)	透水係数(m/s)	1. 47 × 10 ⁻⁴	1. 59 × 10⁻⁵		

🕹 設	計CE	BR(0 -	-20m	nm, 0	-5mn	ı)			
	項目 0-20mm 0-					0–5	mm		
CBR試騎	€(JIS A	1211)	設言	+CBR (%)	:舗装用	3	78.8	47.	. 4
			Ŧ	€3.9 Т	₄の目標(<u>i</u> r			
			設	計期間 10	年		設計期間	間 20 年	
	設計			信	言頼性 90)%			
	CBR	N1	N2	N3	N4	N5	N6	N7	
		(簡易	舗装)	(L 交通)	(A 交通)	(B 交通)	(C交通)	(D交通)	
	(2)	(11)	(13)	(17)	(21)	(29)	(44)	(57)	
	3	9	12	15	19	26	39	50	
	4	9	11	14	18	24	36	46	
	6	8	10	12	16	21	32	41	
	8	7	9	11	14	19	29	38	
	12	6	8	10	13	17	26	33	
	20	6	7	9	11	15	22	29	
	上限値				愛知県:	道路構造の	手引き(201	4), P120	

		1	頁目		0-20m	n 0-5mm	
CBF	試	験(JIS A 1211)	修正CBR(%):	上用	_	88. 2	
		表-10.9 修正	CBR に関する材料	規定(文	献 3)を加	1筆修正)	
機	関	日本道路協会	東·中·西日本高速道路(株)	国土交通	省航空局	鉄道総合技術研究所	
X	分	一般道路	高速道路	空港舗装		鉄道舗装	
路盤	上層	80% 以上 (a=0.35)	80% 以上 (a=0.32)	アスファルト舗装 80% 以上 コンクリート舗装 45% 以上		80% 以上	
	下日	アスファルト舗装 30% 以上 (a=0.25) 20% 以上 30% 未満 (a=0.20)	アスファルト舗装 30%以上 (c=0.25)	アスファ タイプ A: タイプ B: タイプ C:	ルト舗装 30%以上 20%以上 10%以上	30% 以上	
	層	コンクリート舗装 20% 以上	(a - 0.25)	コンクリ・ 20%	- ト舗装 以上		
路	上層		10% 以上		10.1		
床	下屬	State of the second sec	5%以上	10% .	以上		

☞ 「V―>M	ツ吅貝\ 定政/7 北丹土州川1	IIII 1월 16월 16월 19)
項目	基準(案)	調査結果 (0-20mm)	判定
粒度	74µ以下の細粒分が3~5%以下で 最大粒径が40~50mm以下で施工に より土粒子が細粒化しないもの	74μ以下:0.5% 最大粒径:26.5mm	0
透水係数 1.0×10 ⁻³ m/s×10 ⁻⁵ m/s程度		1.24×10 ⁻⁴ m/s程度	0
強度特性 内部摩擦角は30度程度以上		40度程度	0
締め固め効果	締め固め性が良い方が強固な杭を 形成しやすい	△ (強度は問題なし)	Δ
すり減り減量	50%以下 [試験方法:JISA1121]	28%程度	0
スレーキング率	1%以下 [試験方法:JHS110]	0.1% (10-30の値)	0
単位体積重量	大きい方が安定計算上有利となる ことが多い	ム (根拠が不明)	Δ
その他	溶出による影響には注意する。	環境基準クリア	0

<15:00~15:10> ◇座長挨拶 名古屋工業大学 都市社会工学科 助教 森河 由紀弘
<15:10~15:50> ◇話題提供:「破砕瓦を用いた液状化対策」 名古屋工業大学 都市社会工学科 助教 森河 由紀弘
<16:00~16:50> ◇話題提供:「瓦リサイクル材「シャモット」の現状と課題」 碧南窯業株式会社 代表取締役 神谷 彦二 氏 〇片岡瓦工業株式会社 代表取締役 片岡 慶一郎 氏
<16:50~17:00> ◇座長統括

孌	支持力の計算例① 支持力公式
Q _u	$= A_e \left(\alpha \cdot \kappa \cdot C \cdot N_c \cdot S_c + \kappa \cdot q \cdot N_q \cdot S_q + \frac{1}{2} \gamma_1 \cdot \beta \cdot B_e \cdot N_\gamma \cdot S_\gamma \right)$
Q	:荷重の偏心傾斜,支持力係数の寸法効果を考慮した 地盤の極限支持力(kN)
C	: 地盤の粘着力 (kN/m ²)
q	:上載荷重(kN/m^2)で, $q=g_2\cdot D_f$
A	: 有効載荷面積(m ²)
γ1	, _½ : 支持地盤及び根入れ地盤の単位重量(kN/m ³)
_	ただし、地下水位以下では水中単位重量を用いる。
	: 荷重の偏心を考慮した基礎の有効載荷幅(m)
	$B_e = B - 2e_B$
	: 基礎幅(m)
e_{I}	
	: 基礎の有効根入れ深さ(m)
<i>a</i> ,	
	:根人れ効果に対する割り増し係数
N N	, <i>N_q</i> , <i>N_γ</i> : 何重の傾斜を考慮した支持力係数
S S	, $S_{ m q},~S_{\gamma}$: 支持力係数の寸法効果に対する補正係数
	「(社)社団法人日本道路協会-道路橋示方書IV 下部構造編」

